Potential Theory: An Analytic and Probabilistic Approach to Balayage: Universitext
Autor Jürgen Bliedtner, Wolfhard Hansenen Limba Engleză Paperback – apr 1986
Din seria Universitext
- 13% Preț: 353.48 lei
- Preț: 418.67 lei
- Preț: 465.61 lei
- Preț: 358.44 lei
- 17% Preț: 394.41 lei
- 15% Preț: 737.46 lei
- 17% Preț: 364.56 lei
- 15% Preț: 543.75 lei
- 15% Preț: 497.21 lei
- Preț: 634.38 lei
- Preț: 360.93 lei
- 17% Preț: 431.50 lei
- 13% Preț: 355.51 lei
- 17% Preț: 364.81 lei
- Preț: 396.53 lei
- 17% Preț: 365.34 lei
- 15% Preț: 553.33 lei
- Preț: 371.98 lei
- Preț: 673.45 lei
- 15% Preț: 509.58 lei
- 17% Preț: 427.32 lei
- 17% Preț: 426.76 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- Preț: 356.77 lei
- 17% Preț: 369.06 lei
- 19% Preț: 429.21 lei
- Preț: 487.96 lei
- 20% Preț: 628.22 lei
- Preț: 372.86 lei
- Preț: 319.07 lei
- Preț: 379.86 lei
- Preț: 445.88 lei
- Preț: 382.36 lei
- 15% Preț: 533.72 lei
- 15% Preț: 496.02 lei
- 15% Preț: 474.82 lei
- Preț: 389.70 lei
- Preț: 484.08 lei
- 15% Preț: 469.48 lei
- 15% Preț: 643.48 lei
- Preț: 415.02 lei
- 15% Preț: 602.25 lei
- 20% Preț: 510.24 lei
- 15% Preț: 588.37 lei
- Preț: 381.59 lei
- Preț: 489.87 lei
- Preț: 493.89 lei
- 20% Preț: 332.24 lei
Preț: 401.03 lei
Nou
Puncte Express: 602
Preț estimativ în valută:
76.75€ • 79.18$ • 64.95£
76.75€ • 79.18$ • 64.95£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540163961
ISBN-10: 3540163964
Pagini: 456
Ilustrații: XIII, 435 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540163964
Pagini: 456
Ilustrații: XIII, 435 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
0. Classical Potential Theory.- 1. Harmonic and Hyperharmonic Functions.- 2. Brownian Semigroup.- 3. Excessive Functions.- I. General Preliminaries.- 1. Function Cones.- 2. Choquet Boundary.- 3. Analytic Sets and Capacitances.- 4. Laplace Transforms.- 5. Coercive Bilinear Forms.- II. Excessive Functions.- 1. Kernels.- 2. Supermedian Functions.- 3. Semigroups and Resolvents.- 4. Balayage Spaces.- 5. Continuous Potentials.- 6. Construction of Kernels.- 7. Construction of Resolvents.- 8. Construction of Semigroups.- III. Hyperharmonic Functions.- 1. Harmonic Kernels.- 2. Harmonic Structure of a Balayage Space.- 3. Convergence Properties.- 4. Minimum Principle and Sheaf Properties.- 5. Regularizations.- 6. Potentials.- 7. Absorbing and Finely Isolated Points.- 8. Harmonic Spaces.- IV. Markov Processes.- 1. Stochastic Processes.- 2. Markov Processes.- 3. Transition Functions.- 4. Modifications.- 5. Stopping Times.- 6. Strong Markov Processes.- 7. Hunt Processes.- 8. Four Equivalent Views of Potential Theory.- V. Examples.- 1. Subspaces.- 2. Strong Feller Kernels.- 3. Subordination by Convolution Semigroups.- 4. Riesz Potentials.- 5. Products.- 6. Heat Equation.- 7. Brownian Semigroups on the Infinite Dimensional Torus.- 8. Images.- 9. Further Examples.- VI. Balayage Theory.- 1. Balayage of Functions.- 2. Balayage of Measures.- 3. Probabilistic Interpretation.- 4. Base.- 5. Exceptional Sets.- 6. Essential Base.- 7. Penetration Time.- 8. Fine Support of Potentials.- 9. Fine Properties of Balayage.- 10. Convergence of Balayage Measures.- 11. Accumulation Points of Balayage Measures.- 12. Extreme Representing Measures.- VII. Dirichlet Problem.- 1. Perron Sets.- 2. Generalized Dirichlet Problem.- 3. Regular Points.- 4. Irregular Points.- 5. Simplicial Cones.- 6. Weak Dirichlet Problem.- 7. Characterization of the Generalized Solution.- 8. Fine Dirichlet Problem.- 9. Approximation.- 10. Removable Singularities.- VIII. Partial Differential Equations.- 1. Bauer Spaces.- 2. Semi-El1iptic Differential Operators.- 3. Smooth Bauer Spaces.- 4. Weak Solutions.- 5. Elliptic-Parabolic Differential Operators.- Notes.- Index of Symbols.- Guide to Standard Examples.