Potential Theory: An Analytic and Probabilistic Approach to Balayage: Universitext
Autor Jürgen Bliedtner, Wolfhard Hansenen Limba Engleză Paperback – apr 1986
Din seria Universitext
- 17% Preț: 361.80 lei
- 15% Preț: 528.22 lei
- 15% Preț: 537.52 lei
- 15% Preț: 495.01 lei
- 17% Preț: 427.30 lei
- 17% Preț: 364.56 lei
- 17% Preț: 366.00 lei
- 14% Preț: 389.00 lei
- Preț: 654.18 lei
- 15% Preț: 480.13 lei
- Preț: 348.27 lei
- 17% Preț: 431.48 lei
- Preț: 375.97 lei
- 19% Preț: 393.94 lei
- Preț: 396.89 lei
- Preț: 374.67 lei
- 13% Preț: 358.08 lei
- 17% Preț: 364.81 lei
- Preț: 356.92 lei
- 17% Preț: 426.75 lei
- Preț: 616.26 lei
- Preț: 474.03 lei
- 17% Preț: 427.67 lei
- 20% Preț: 569.54 lei
- 15% Preț: 716.33 lei
- 17% Preț: 369.06 lei
- 14% Preț: 349.79 lei
- 17% Preț: 394.40 lei
- Preț: 375.54 lei
- Preț: 269.56 lei
- Preț: 369.05 lei
- Preț: 433.18 lei
- Preț: 371.49 lei
- 15% Preț: 518.46 lei
- 15% Preț: 481.85 lei
- 15% Preț: 461.25 lei
- Preț: 378.62 lei
- Preț: 470.28 lei
- 15% Preț: 625.05 lei
- Preț: 403.19 lei
- 15% Preț: 585.02 lei
- 20% Preț: 495.65 lei
- 15% Preț: 571.53 lei
- Preț: 370.74 lei
- Preț: 475.89 lei
- Preț: 479.80 lei
- 20% Preț: 322.78 lei
- 15% Preț: 459.82 lei
- Preț: 447.76 lei
Preț: 389.61 lei
Nou
Puncte Express: 584
Preț estimativ în valută:
74.56€ • 78.19$ • 62.17£
74.56€ • 78.19$ • 62.17£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540163961
ISBN-10: 3540163964
Pagini: 456
Ilustrații: XIII, 435 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540163964
Pagini: 456
Ilustrații: XIII, 435 p.
Dimensiuni: 170 x 244 x 24 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 1st ed. 1986
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
GraduateCuprins
0. Classical Potential Theory.- 1. Harmonic and Hyperharmonic Functions.- 2. Brownian Semigroup.- 3. Excessive Functions.- I. General Preliminaries.- 1. Function Cones.- 2. Choquet Boundary.- 3. Analytic Sets and Capacitances.- 4. Laplace Transforms.- 5. Coercive Bilinear Forms.- II. Excessive Functions.- 1. Kernels.- 2. Supermedian Functions.- 3. Semigroups and Resolvents.- 4. Balayage Spaces.- 5. Continuous Potentials.- 6. Construction of Kernels.- 7. Construction of Resolvents.- 8. Construction of Semigroups.- III. Hyperharmonic Functions.- 1. Harmonic Kernels.- 2. Harmonic Structure of a Balayage Space.- 3. Convergence Properties.- 4. Minimum Principle and Sheaf Properties.- 5. Regularizations.- 6. Potentials.- 7. Absorbing and Finely Isolated Points.- 8. Harmonic Spaces.- IV. Markov Processes.- 1. Stochastic Processes.- 2. Markov Processes.- 3. Transition Functions.- 4. Modifications.- 5. Stopping Times.- 6. Strong Markov Processes.- 7. Hunt Processes.- 8. Four Equivalent Views of Potential Theory.- V. Examples.- 1. Subspaces.- 2. Strong Feller Kernels.- 3. Subordination by Convolution Semigroups.- 4. Riesz Potentials.- 5. Products.- 6. Heat Equation.- 7. Brownian Semigroups on the Infinite Dimensional Torus.- 8. Images.- 9. Further Examples.- VI. Balayage Theory.- 1. Balayage of Functions.- 2. Balayage of Measures.- 3. Probabilistic Interpretation.- 4. Base.- 5. Exceptional Sets.- 6. Essential Base.- 7. Penetration Time.- 8. Fine Support of Potentials.- 9. Fine Properties of Balayage.- 10. Convergence of Balayage Measures.- 11. Accumulation Points of Balayage Measures.- 12. Extreme Representing Measures.- VII. Dirichlet Problem.- 1. Perron Sets.- 2. Generalized Dirichlet Problem.- 3. Regular Points.- 4. Irregular Points.- 5. Simplicial Cones.- 6. Weak Dirichlet Problem.- 7. Characterization of the Generalized Solution.- 8. Fine Dirichlet Problem.- 9. Approximation.- 10. Removable Singularities.- VIII. Partial Differential Equations.- 1. Bauer Spaces.- 2. Semi-El1iptic Differential Operators.- 3. Smooth Bauer Spaces.- 4. Weak Solutions.- 5. Elliptic-Parabolic Differential Operators.- Notes.- Index of Symbols.- Guide to Standard Examples.