Prediction Theory for Finite Populations: Springer Series in Statistics
Autor Heleno Bolfarine, Shelemyahu Zacksen Limba Engleză Paperback – 26 sep 2011
Din seria Springer Series in Statistics
- 18% Preț: 696.52 lei
- 20% Preț: 630.95 lei
- 20% Preț: 816.42 lei
- 20% Preț: 1000.82 lei
- Preț: 379.72 lei
- 20% Preț: 697.11 lei
- 20% Preț: 445.19 lei
- 20% Preț: 881.49 lei
- 18% Preț: 1201.60 lei
- 18% Preț: 939.46 lei
- 18% Preț: 929.05 lei
- 18% Preț: 771.49 lei
- 15% Preț: 629.50 lei
- 18% Preț: 1187.38 lei
- 15% Preț: 627.62 lei
- 15% Preț: 628.55 lei
- 15% Preț: 627.62 lei
- 18% Preț: 1349.67 lei
- 15% Preț: 634.13 lei
- 18% Preț: 1082.51 lei
- 18% Preț: 925.07 lei
- 18% Preț: 1353.23 lei
- 18% Preț: 1516.78 lei
- 18% Preț: 1196.10 lei
- 15% Preț: 498.96 lei
- 18% Preț: 868.06 lei
- 15% Preț: 631.25 lei
- 18% Preț: 978.74 lei
- 18% Preț: 1079.74 lei
- 18% Preț: 1193.80 lei
- 18% Preț: 867.11 lei
- 18% Preț: 887.05 lei
- 18% Preț: 916.79 lei
- Preț: 380.47 lei
- Preț: 380.09 lei
- 18% Preț: 1351.06 lei
- Preț: 379.72 lei
- 18% Preț: 868.19 lei
- 18% Preț: 933.04 lei
- 18% Preț: 1209.57 lei
- 18% Preț: 936.85 lei
- 15% Preț: 624.74 lei
- 18% Preț: 1626.54 lei
- 15% Preț: 625.40 lei
- 15% Preț: 569.59 lei
- 18% Preț: 976.13 lei
- 15% Preț: 624.92 lei
- 18% Preț: 783.28 lei
- 18% Preț: 706.81 lei
Preț: 373.00 lei
Nou
Puncte Express: 560
Preț estimativ în valută:
71.39€ • 74.41$ • 59.43£
71.39€ • 74.41$ • 59.43£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461277132
ISBN-10: 1461277132
Pagini: 224
Ilustrații: XII, 207 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461277132
Pagini: 224
Ilustrații: XII, 207 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.32 kg
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
Synopsis.- 1. Basic Ideas and Principles.- 1.1. The Fixed Finite Population Model.- 1.2. The Superpopulation Model.- 1.3. Predictors of Population Quantities.- 1.4. The Model—Based Design—Based Approach.- 1.5. Exercises.- 2. Optimal Predictors of Population Quantities.- 2.1. Best Linear Unbiased Predictors.- 2.2. Best Unbiased Predictors.- 2.3. Equivariant Predictors.- 2.4. Stein—Type Shrinkage Predictors.- 2.5. Exercises.- 3. Bayes and Minimax Predictors.- 3.1. The Multivariate Normal Model.- 3.2. Bayes Linear Predictors.- 3.3. Minimax and Admissible Predictors.- 3.4. Dynamic Bayesian Prediction.- 3.5. Empirical Bayes Predictors.- 3.6. Exercises.- 4. Maximum—Likelihood Predictors.- 4.1. Predictive Likelihoods.- 4.2. Maximum Likelihood Predictors of T Under the Normal Superpopulation Model.- 4.3. Maximum—Likelihood Predictors of the Population Variance Sy2 Under the Normal Regression Model.- 4.4. Exercises.- 5. Classical and Bayesian Prediction Intervals.- 5.1. Confidence Prediction Intervals.- 5.2. Tolerance Prediction Intervals for T.- 5.3. Bayesian Prediction Intervals.- 5.4. Exercises.- 6. The Effects of Model Misspecification, Conditions For Robustness, and Bayesian Modeling.- 6.1. Robust Linear Prediction of T.- 6.2. Estimation of the Prediction Variance.- 6.3. Simulation Estimates of the ?* MSE of $${\hat T_R}$$.- 6.4. Bayesian Robustness.- 6.5. Bayesian Modeling.- 6.6. Exercises.- 7. Models with Measurement Errors.- 7.1. The Location and Simple Regression Models.- 7.2. Bayesian Models with Measurement Errors.- 7.3. Exercises.- 8. Asymptotic Properties in Finite Populations.- 8.1. Predictors of T.- 8.2. The Asymptotic Distribution of $${\hat \beta _{{s_k}}}$$.- 8.3. The Linear Regression Model with Measurement Errors.- 8.4. Exercises.- 9. DesignCharacteristics of Predictors.- 9.1. The QR Class of Predictors.- 9.2. ADU Predictors.- 9.3. Optimal ADU Predictors.- 9.4. Exercises.- Glossary of Predictors.- Author Index.