Probabilistic Behavior of Harmonic Functions: Progress in Mathematics, cartea 175
Autor Rodrigo Banuelos, Charles N. Mooreen Limba Engleză Hardback – aug 1999
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 384.31 lei 6-8 săpt. | |
Birkhäuser Basel – 6 oct 2012 | 384.31 lei 6-8 săpt. | |
Hardback (1) | 391.61 lei 6-8 săpt. | |
Birkhäuser Basel – aug 1999 | 391.61 lei 6-8 săpt. |
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 749.27 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 580.82 lei
- Preț: 392.37 lei
- Preț: 395.09 lei
- Preț: 376.80 lei
- Preț: 390.25 lei
- 18% Preț: 729.53 lei
- 15% Preț: 652.49 lei
- 15% Preț: 649.22 lei
- 18% Preț: 897.95 lei
- Preț: 385.08 lei
- Preț: 391.02 lei
- Preț: 378.54 lei
- 15% Preț: 531.59 lei
- 15% Preț: 642.83 lei
- 15% Preț: 650.69 lei
- Preț: 381.21 lei
- Preț: 392.37 lei
- Preț: 398.53 lei
- 15% Preț: 699.28 lei
- Preț: 416.92 lei
- Preț: 385.84 lei
- 18% Preț: 902.65 lei
- 18% Preț: 802.28 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1129.83 lei
- 15% Preț: 494.03 lei
- 15% Preț: 593.08 lei
Preț: 391.61 lei
Nou
Puncte Express: 587
Preț estimativ în valută:
74.96€ • 78.75$ • 62.100£
74.96€ • 78.75$ • 62.100£
Carte tipărită la comandă
Livrare economică 12-26 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764360627
ISBN-10: 3764360623
Pagini: 228
Ilustrații: XIV, 209 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1999
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3764360623
Pagini: 228
Ilustrații: XIV, 209 p.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.5 kg
Ediția:1999
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Basic Ideas and Tools.- 1.1 Harmonic functions and their basic properties.- 1.2 The Poisson kernel and Dirichlet problem for the ball.- 1.3 The Poisson kernel and Dirichlet problem for R+n+1.- 1.4 The Hardy-Littlewood and nontangential maximal functions.- 1.5 HP spaces on the upper half space.- 1.6 Some basics on singular integrals.- 1.7 The g-function and area function.- 1.8 Classical results on boundary behavior.- 2 Decomposition into Martingales: An Invariance Principle.- 2.1 Square function estimates for sums of atoms.- 2.2 Decomposition of harmonic functions.- 2.3 Controlling errors: gradient estimates.- 3 Kolmogorov’s LIL for Harmonic Functions.- 3.1 The proof of the upper-half.- 3.2 The proof of the lower-half.- 3.3 The sharpness of the Kolmogorov condition.- 3.4 A related LIL for the Littlewood-Paley g*-function.- 4 Sharp Good-? Inequalities for A and N.- 4.1 Sharp control of N by A.- 4.2 Sharp control of A by N.- 4.3 Application I. A Chung-type LIL for harmonic functions.- 4.4 Application II. The Burkholder-Gundy ?-theorem.- 5 Good-? Inequalities for the Density of the Area Integral.- 5.1 Sharp control of A and N by D.- 5.2 Sharp control of D by A and N.- 5.3 Application I. A Kesten-type LIL and sharp LP-constants.- 5.4 Application II. The Brossard-Chevalier L log L result.- 6 The Classical LIL’s in Analysis.- 6.1 LIL’s for lacunary series.- 6.2 LIL’s for Bloch functions.- 6.3 LIL’s for subclasses of the Bloch space.- 6.4 On a question of Makarov and Przytycki.- References.- Notation Index.
Recenzii
"The book is devoted to the interplay of potential theory and probability theory…The reader interested in this subject – the interplay of probability theory, harmonic analysis and potential theory – will find a systematic treatment, inspiring both sides, analysis and probability theory."
–Zentralblatt Math
–Zentralblatt Math