Cantitate/Preț
Produs

Probability and Statistical Inference: From Basic Principles to Advanced Models: Chapman & Hall/CRC Texts in Statistical Science

Autor Miltiadis C. Mavrakakis, Jeremy Penzer
en Limba Engleză Hardback – 29 mar 2021
Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting.

Features:
•Complete introduction to mathematical probability, random variables, and distribution theory.
•Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes.
•Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference.
•Detailed introduction to Bayesian statistics and associated topics.
•Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC).
This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 30424 lei  6-8 săpt. +7503 lei  10-14 zile
  CRC Press – 26 sep 2022 30424 lei  6-8 săpt. +7503 lei  10-14 zile
Hardback (1) 65412 lei  6-8 săpt.
  CRC Press – 29 mar 2021 65412 lei  6-8 săpt.

Din seria Chapman & Hall/CRC Texts in Statistical Science

Preț: 65412 lei

Preț vechi: 91729 lei
-29% Nou

Puncte Express: 981

Preț estimativ în valută:
12517 13218$ 10416£

Carte tipărită la comandă

Livrare economică 11-25 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781584889397
ISBN-10: 158488939X
Pagini: 444
Ilustrații: 20 b/w images
Dimensiuni: 156 x 234 x 25 mm
Greutate: 0.73 kg
Ediția:New.
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science


Public țintă

Undergraduate

Cuprins

1. Introduction
2. Probability
3. Random Variables and Univariate Distributions
4. Multivariate Distributions
5. Conditional Distributions
6. Statistical Models
7. Sample Moments and Quantiles
8. Estimation, Testing, and Prediction
9. Likelihood-based Inference
10. Inferential Theory
11. Bayesian Inference
12. Simulation Methods

Notă biografică

Miltiadis Mavrakakis obtained his PhD in Statistics at LSE under the supervision of Jeremy Penzer. His first job was as a teaching fellow at LSE, taking over course ST202 and completing this book in the process. He splits his time between lecturing (at LSE, Imperial College London, and the University of London International Programme) and his applied statistical work. Milt is currently a Senior Analyst at Smartodds, a sports betting consultancy, where he focuses on the statistical modelling of sports and financial markets. He lives in London with his wife, son, and daughter.
Jeremy Penzer first post-doc job was as a research assistant at the London School of Economics. Jeremy went on to become a lecturer at LSE and to teach the second year statistical inference course (ST202) that formed the starting point for this book. While working at LSE, his research interests were time series analysis and computational statistics. After 12 years as an academic, Jeremy shifted career to work in financial services. He is currently Chief Marketing and Analytics Officer for Capital One Europe (plc). Jeremy lives just outside Nottingham with his wife and two daughters.


Recenzii

"Learning statistics is one thing; learning to think like a statistician is something else. This book grabs readers by the hand and takes them on a journey through statistics, by the end of which they are well-equipped to think like a statistician. For a book at intermediate level this is no mean feat: ideas are subtle and require a delicate balance of formal mathematics and statistical insight, a balance that is deftly maintained throughout the book. The mathematics is rigorous, but not so much so that underlying intuition is lost. And the statistical concepts themselves are explained with a clarity that is rare in textbooks at a similar level. I wish this book had been available when I was first learning statistics. And I wouldn’t hesitate now to use it as the basis for teaching on any intermediate statistics course. The best compliment I can give is that it was a pleasure to read and gave me new insights, even on material with which I am very familiar. I love this book and congratulate the authors on writing with such clarity and vision. I hope many readers take the opportunity to follow the statistical journey the authors provide."
~
Stuart Coles, author of An Introduction to Statistical Modeling of Extreme Values
“Overall, I give Probability and Statistical Inference: From Basic Principles to Advanced Models a solid thumbs up! It’s well suited as a primary introductory probability theory textbook for undergraduates or applied masters students in statistics or data science. It’s also appropriate as a primary textbook for an advanced survey course in probability and statistics. Further, I recommend this textbook to working professionals in any field who seek further insight on probability theory and statistical inference.”
~Gabriel J. Young, The American Statistician

"This book provides a comprehensive and thorough coverage of probability and distribution theory and statistical inference. Based on a popular undergraduate course at the London School of Economics, the content and its presentation have been honed by the authors over many years of teaching. The result is an extremely clear and engaging text, which achieves that rare balance of explaining statistical concepts in an intuitive and accessible way while maintaining precision and rigour. Concepts are introduced and illustrated using real-world examples, which aids understanding and highlights their practical relevance. The book covers foundational and advanced topics in probability and statistical inference, with an excellent overview of statistical modelling, and detailed treatments of Bayesian approaches and modern simulation-based estimation methods. Each chapter includes an extensive and graduated set of exercises. I highly recommend the book for advanced undergraduate and postgraduate students in statistics and data science, but also as an essential reference for researchers."
~Fiona Steele, London School of Economics and Political Science
"This book covers a broad range of topics in advanced probability and statistics that are fundamental to a proper understanding of data analysis and statistical modeling. The authors did an excellent job in introducing these topics from basic principles to advanced models in a detailed but approachable style, which makes it possible for senior undergraduates in statistics, mathematics, or related majors to use this book in the first course of probability and statistics so that the students can benefit from the holistic and comprehensive coverage of topics from basic random variables to advanced statistical models."
~Bing Si, State University of New York at Binghamton
"Learning statistics is one thing; learning to think like a statistician is something else. This book grabs readers by the hand and takes them on a journey through statistics, by the end of which they are well-equipped to think like a statistician. For a book at intermediate level this is no mean feat: ideas are subtle and require a delicate balance of formal mathematics and statistical insight, a balance that is deftly maintained throughout the book. The mathematics is rigorous, but not so much so that underlying intuition is lost. And the statistical concepts themselves are explained with a clarity that is rare in textbooks at a similar level. I wish this book had been available when I was first learning statistics. And I wouldn’t hesitate now to use it as the basis for teaching on any intermediate statistics course. The best compliment I can give is that it was a pleasure to read and gave me new insights, even on material with which I am very familiar. I love this book and congratulate the authors on writing with such clarity and vision. I hope many readers take the opportunity to follow the statistical journey the authors provide."
~
Stuart Coles, author of An Introduction to Statistical Modeling of Extreme Values
“Overall, I give Probability and Statistical Inference: From Basic Principles to Advanced Models a solid thumbs up! It’s well suited as a primary introductory probability theory textbook for undergraduates or applied masters students in statistics or data science. It’s also appropriate as a primary textbook for an advanced survey course in probability and statistics. Further, I recommend this textbook to working professionals in any field who seek further insight on probability theory and statistical inference.”
~Gabriel J. Young, The American Statistician

Descriere

This text presents key topics in mathematical statistics in a rigorous yet accessible manner. It covers aspects of probability, distribution theory, and random processes that are fundamental to a proper understanding of inference. The book also discusses the properties of estimators constructed from a random sample of ends, with sections on methods for estimating parameters in time series models and computationally intensive inferential techniques. The text challenges the more mathematically inclined students while providing an approachable explanation of advanced statistical concepts for students who struggle with existing texts.