Cantitate/Preț
Produs

Probing Non-Equilibrium Dynamics in Two-Dimensional Quantum Gases: Springer Theses

Autor Cheng-An Chen
en Limba Engleză Paperback – 13 oct 2023
This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63400 lei  6-8 săpt.
  Springer International Publishing – 13 oct 2023 63400 lei  6-8 săpt.
Hardback (1) 64006 lei  6-8 săpt.
  Springer International Publishing – 12 oct 2022 64006 lei  6-8 săpt.

Din seria Springer Theses

Preț: 63400 lei

Preț vechi: 74588 lei
-15% Nou

Puncte Express: 951

Preț estimativ în valută:
12133 12595$ 10117£

Carte tipărită la comandă

Livrare economică 22 martie-05 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031133572
ISBN-10: 3031133579
Ilustrații: XIII, 148 p. 188 illus., 131 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.24 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Chapter 1. Introduction.- Chapter 2. Experimental setup.- Chapter 3. Experimental procedure.- Chapter 4. Universal quench dynamics and townes soliton formation.- Chapter 5. Scale invariant townes solitons.- Chapter 6. Quasiparticle pair-production and quantum entanglement.- Chapter 7. A compact and versatile quantum gas machine.- Chapter 8. Summary.

Notă biografică

Cheng-An Chen received bachelor’s and master’s degrees in physics from National Taiwan University, Taiwan, in 2008 and 2010, respectively. He worked in rubidium Bose-Einstein condensate experiments at Institute of Atomic and Molecular Science, Academia Sinica, Taiwan from 2011 to 2015. He received a PhD in physics from Purdue University, USA in 2021. Dr. Chen is currently a quantum engineer at Atom Computing.

Textul de pe ultima copertă

This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.

Caracteristici

Nominated as an outstanding PhD thesis by Purdue University Describes tools for realizing quantum simulations in tunable 2D quantum gases Presents precise techniques for imaging the evolution of collective excitations