Cantitate/Preț
Produs

Project Scheduling under Limited Resources: Models, Methods, and Applications: Lecture Notes in Economics and Mathematical Systems, cartea 478

Autor Sönke Hartmann
en Limba Engleză Paperback – 17 noi 1999
Approaches to project scheduling under resource constraints are discussed in this book. After an overview of different models, it deals with exact and heuristic scheduling algorithms. The focus is on the development of new algorithms. Computational experiments demonstrate the efficiency of the new heuristics. Finally, it is shown how the models and methods discussed here can be applied to projects in research and development as well as market research.
Citește tot Restrânge

Din seria Lecture Notes in Economics and Mathematical Systems

Preț: 38508 lei

Nou

Puncte Express: 578

Preț estimativ în valută:
7372 7586$ 6214£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540663928
ISBN-10: 3540663924
Pagini: 244
Ilustrații: XII, 221 p. 12 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.35 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Economics and Mathematical Systems

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1 Introduction.- 2 Project Scheduling Models.- 2.1 Basic Model: The RCPSP.- 2.2 Variants and Extensions.- 2.3 Relations to Packing and Cutting Problems.- 3 Exact Multi-Mode Algorithms.- 3.1 Enumeration Schemes.- 3.2 Bounding Rules.- 3.3 Theoretical Comparison of Schedule Enumeration.- 3.4 Computational Results.- 4 Classification of single-Mode Heuristics.- 4.1 Schedule Generation Schemes.- 4.2 Priority Rule Based Heuristics.- 4.3 Metaheuristic Approaches.- 4.4 Other Heuristics.- 5 Single-Mode Genetic Algorithms.- 5.1 Evolution and Optimization.- 5.2 Activity List Based Genetic Algorithm.- 5.3 Random Key Based Genetic Algorithm.- 5.4 Priority Rule Based Genetic Algorithm.- 5.5 Computational Results.- 5.6 Extending the Genetic Algorithm.- 6 Evaluation of Single-Mode Heuristics.- 6.1 Test Design.- 6.2 Computational Results.- 7 Multi-Mode Genetic Algorithm.- 7.1 Components of the Genetic Algorithm.- 7.2 Improving Schedules by Local Search.- 7.3 Computational Results.- 8 Case Studies.- 8.1 Scheduling Medical Research Experiments.- 8.2 Selecting Market Research Interviewers.- 9 Conclusions.- A Test Instances.- A.1 Patterson Instance Set.- A.2 Instance Sets Generated by ProGen.- A.2.1 Single-Mode Instance Sets.- A.2.2 Multi-Mode Instance Sets.- B Solving the MRCPSP using AMPL.- B.1 AMPL-Formulation of the MRCPSP.- B.2 AMPL-Data File for the MRCPSP.- List of Abbreviations.- List of Basic Notation.- List of Tables.- List of Figures.