Cantitate/Preț
Produs

Residue Currents and Bezout Identities: Progress in Mathematics, cartea 114

Editat de C.A. Berenstein, R. Gay, A. Vidras, A. Yger
en Limba Engleză Hardback – 30 sep 1993
The objective of this monograph is to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residue have recently played in obtaining effective estimates for problems in commutative algebra. Bezout identities, i. e., f1g1 + ... + fmgm = 1, appear naturally in many problems, for example in commutative algebra in the Nullstellensatz, and in signal processing in the deconvolution problem. One way to solve them is by using explicit interpolation formulas in Cn, and these depend on the theory of multidimensional residues. The authors present this theory in detail, in a form developed by them, and illustrate its applications to the effective Nullstellensatz and to the Fundamental Principle for convolution equations.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 38121 lei  6-8 săpt.
  Birkhäuser Basel – 18 oct 2012 38121 lei  6-8 săpt.
Hardback (1) 57867 lei  6-8 săpt.
  Birkhauser – 30 sep 1993 57867 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 57867 lei

Preț vechi: 68078 lei
-15% Nou

Puncte Express: 868

Preț estimativ în valută:
11075 11518$ 9268£

Carte tipărită la comandă

Livrare economică 14-28 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764329457
ISBN-10: 3764329459
Pagini: 158
Greutate: 0.43 kg
Editura: Birkhauser
Colecția Birkhauser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

1. Residue Currents in one Dimension. Different Approaches.- 1. Residue attached to a holomorphic function.- 2. Some other approaches to the residue current.- 3. Some variants of the classical Pompeiu formula.- 4. Some applications of Pompeiu’s formulas. Local results.- 5. Some applications of Pompeiu’s formulas. Global results.- References for Chapter 1.- 2. Integral Formulas in Several Variables.- 1. Chains and cochains, homology and cohomology.- 2. Cauchy’s formula for test functions.- 3. Weighted Bochner-Martinelli formulas.- 4. Weighted Andreotti-Norguet formulas.- 5. Applications to systems of algebraic equations.- References for Chapter 2.- 3. Residue Currents and Analytic Continuation.- 1. Leray iterated residues.- 2. Multiplication of principal values and residue currents.- 3. The Dolbeault complex and the Grothendieck residue.- 4. Residue currents.- 5. The local duality theorem.- References for Chapter 3.- 4. The Cauchy-Weil Formula and its Consequences.- 1. The Cauchy-Weil formula.- 2. The Grothendieck residue in the discrete case.- 3. The Grothendieck residue in the algebraic case.- References for Chapter 4.- 5. Applications to Commutative Algebra and Harmonic Analysis.- 1. An analytic proof of the algebraic Nullstellensatz.- 2. The membership problem.- 3. The Fundamental Principle of L. Ehrenpreis.- 4. The role of the Mellin transform.- References for Chapter 5.

Recenzii

    "What an interesting idea! Dealing with residues from the point of view of complex variable theory! We thought that that was all over, after the advent of the Grothendieck hordes. But here we find some brave souls that reassert the primacy of analysis over abstract nonsense! Congratulations!"   
  - The Bulletin of Mathematical Books