Cantitate/Preț
Produs

Resolution Space, Operators and Systems: Lecture Notes in Economics and Mathematical Systems, cartea 82

Autor R. Saeks
en Limba Engleză Paperback – 5 feb 1973
If one takes the intuitive point of view that a system is a black box whose inputs and outputs are time functions or time series it is natural to adopt an operator theoretic approach to the stUdy of such systems. Here the black box is modeled by an operator which maps an input time function into an output time function. Such an approach yields a unification of the continuous (time function) and discrete (time series) theories and simultaneously allows one to formulate a single theory which is valid for time-variable distributed and nonlinear systems. Surprisingly, however, the great potential for such an approach has only recently been realized. Early attempts to apply classical operator theory typically having failed when optimal controllers proved to be non-causal, feedback systems unstable or coupling networks non-lossless. Moreover, attempts to circumvent these difficulties by adding causality or stability constraints to the problems failed when it was realized that these time based concepts were undefined and; in fact, undefinable; in the Hilbert and Banach spaces of classical operator theory.
Citește tot Restrânge

Din seria Lecture Notes in Economics and Mathematical Systems

Preț: 64826 lei

Preț vechi: 81033 lei
-20% Nou

Puncte Express: 972

Preț estimativ în valută:
12406 12799$ 104100£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540061557
ISBN-10: 354006155X
Pagini: 284
Ilustrații: X, 270 p.
Dimensiuni: 178 x 254 x 15 mm
Greutate: 0.49 kg
Ediția:Softcover reprint of the original 1st ed. 1973
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Economics and Mathematical Systems

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

1. Causality.- A. Resolution Space.- B. Causal Operators.- C. Closure Theorems.- D. The Integrals of Triangular Truncation.- E. Strictly Causal Operators.- F. Operator Decomposition.- G. Problems and Discussion.- 2. Feedback Systems.- A. Well-Posedness.- B. Stability.- C. Sensitivity.- D. Optimal Controllers.- E. Problems and Discussion.- 3. Dynamical Systems.- A. State Decomposition.- B. Controllability, Observability and Stability.- C. The Regulator Problem.- D. Problems and Discussion.- 4. Time-Invariance.- A. Uniform Resolution Space.- B. Spaces of Time-Invariant Operators.- C. The Fourier Transform.- D. The Laplace Transform.- E. Problems and Discussion.- Appendices.- A. Topological Groups.- A. Elementary Group Concepts.- B. Character Groups.- C. Ordered Groups.- D. Integration on (LCA) Groups.- E. Differentiation on (LCA) Groups.- B. Operator Valued Integration.- A. Operator Valued Measures.- B. The Lebesgue Integral.- C. The Cauchy Integrals.- D. Integration over Spectral Measures.- C. Spectral Theory.- A. Spectral Theory for Unitary Groups.- B. Spectral Multiplicity Theory.- C. Spectral Theory for Contractive Semigroups.- D. Representation Theory.- A. Resolution Space Representation Theory.- B. Uniform Resolution Space Representation Theory.- References.