Cantitate/Preț
Produs

Rough – Granular Computing in Knowledge Discovery and Data Mining: Studies in Computational Intelligence, cartea 152

Autor J. Stepaniuk
en Limba Engleză Paperback – 28 oct 2010

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62659 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 28 oct 2010 62659 lei  6-8 săpt.
Hardback (1) 63129 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 19 aug 2008 63129 lei  6-8 săpt.

Din seria Studies in Computational Intelligence

Preț: 62659 lei

Preț vechi: 78324 lei
-20% Nou

Puncte Express: 940

Preț estimativ în valută:
11994 12576$ 9910£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642089725
ISBN-10: 3642089720
Pagini: 172
Ilustrații: XIV, 162 p.
Dimensiuni: 155 x 235 x 9 mm
Greutate: 0.25 kg
Ediția:Softcover reprint of hardcover 1st ed. 2008
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Computational Intelligence

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I: Rough Set Methodology.- Rough Sets.- Data Reduction.- II: Classification and Clustering.- Selected Classification Methods.- Selected Clustering Methods.- A Medical Case Study.- III: Complex Data and Complex Concepts.- Mining Knowledge from Complex Data.- Complex Concept Approximations.- IV: Conclusions, Bibliography and Further Readings.- Concluding Remarks.

Textul de pe ultima copertă

The book "Rough-Granular Computing in Knowledge Discovery and Data Mining" written by Professor Jaroslaw Stepaniuk is dedicated to methods based on a combination of the following three closely related and rapidly growing areas: granular computing, rough sets, and knowledge discovery and data mining (KDD). In the book, the KDD foundations based on the rough set approach and granular computing are discussed together with illustrative applications. In searching for relevant patterns or in inducing (constructing) classifiers in KDD, different kinds of granules are modeled. In this modeling process, granules called approximation spaces play a special rule. Approximation spaces are defined by  neighborhoods of objects and measures between sets of objects. In the book, the author underlines the importance of approximation spaces in searching for relevant patterns and other granules on dfferent levels of modeling for compound concept approximations. Calculi on such granules are used for modeling computations on granules in searching for target (sub) optimal granules and their interactions on different levels of hierarchical modeling. The methods based on the combination of granular computing, the rough and fuzzy set approaches allow for an effcient construction of the high quality approximation of compound concepts.

Caracteristici

Presents recent research in Rough - Granular Computing in Knowledge Discovery and Data Mining