Cantitate/Preț
Produs

Simulation Studies of Recombination Kinetics and Spin Dynamics in Radiation Chemistry: Springer Theses

Autor Amit Agarwal
en Limba Engleză Hardback – 13 mai 2014
Amit Agarwal’s thesis reports a substantial contribution to the microscopic simulation of radiation chemical reactions. In his research Agarwal extends existing models to further understand scavenging, spin and relaxation effects. This research has advanced the development of both the Monte Carlo Random Flights and the Independent Reaction Times (IRT) simulation tools. Particular highlights are the extension of these tools to include both the spin-exchange interaction and spin relaxation, both of which are influential in radiolytic systems where many reactions are spin-controlled. In addition, the study has led to the discovery of a novel correlation of the scavenging rate with the recombination time in low permittivity solvents. This finding goes against existing assumptions underlying the theory of diffusion kinetics while still being accommodated in the IRT method which demonstrates the power of this unconventional approach. The work in this thesis can be applied to a wide number of fields including the nuclear industry, medicine, food treatment, polymer curing, the preparation of nano-colloids, power generation and waste disposal.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62540 lei  6-8 săpt.
  Springer International Publishing – 3 sep 2016 62540 lei  6-8 săpt.
Hardback (1) 63048 lei  6-8 săpt.
  Springer International Publishing – 13 mai 2014 63048 lei  6-8 săpt.

Din seria Springer Theses

Preț: 63048 lei

Preț vechi: 74174 lei
-15% Nou

Puncte Express: 946

Preț estimativ în valută:
12067 12577$ 10045£

Carte tipărită la comandă

Livrare economică 04-18 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319062716
ISBN-10: 3319062719
Pagini: 368
Ilustrații: XXV, 339 p. 135 illus., 107 illus. in color.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.66 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Introduction to Radiation Chemistry.- Theory of Scavenging and Recombination Kinetics.- Spin Dynamics.- Simulation Techniques and Development.- Photodissociation of Hydrogen Peroxide Solution.- Reactive Products: New IRT algorithm.- Competition between Ion Recombination and Scavenging.- Quantum Entanglement: Radiolysis of Hydrocarbons.- Extending the IRT Algorithm for Micelles.

Textul de pe ultima copertă

Amit Agarwal’s thesis reports a substantial contribution to the microscopic simulation of radiation chemical reactions. In his research Agarwal extends existing models to further understand scavenging, spin and relaxation effects. This research has advanced the development of both the Monte Carlo Random Flights and the Independent Reaction Times (IRT) simulation tools. Particular highlights are the extension of these tools to include both the spin-exchange interaction and spin relaxation, both of which are influential in radiolytic systems where many reactions are spin-controlled. In addition, the study has led to the discovery of a novel correlation of the scavenging rate with the recombination time in low permittivity solvents. This finding goes against existing assumptions underlying the theory of diffusion kinetics while still being accommodated in the IRT method which demonstrates the power of this unconventional approach. The work in this thesis can be applied to a wide number of fields including the nuclear industry, medicine, food treatment, polymer curing, the preparation of nano-colloids, power generation and waste disposal.

Caracteristici

Nominated as an outstanding Ph.D. thesis by the University Of Oxford, UK Includes an introduction to radiation chemistry which is suitable for newcomers to the field Describes new simulation techniques to model spur kinetics with an explicit treatment for spin dynamics Includes supplementary material: sn.pub/extras