Cantitate/Preț
Produs

Sliding Mode Control In Engineering: Automation and Control Engineering

Autor Wilfrid Perruquetti, Jean-Pierre Barbot
en Limba Engleză Hardback – 29 ian 2002
Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equations over non-Archimedean fields in relation to Markov processes.
Citește tot Restrânge

Din seria Automation and Control Engineering

Preț: 156750 lei

Preț vechi: 212313 lei
-26% Nou

Puncte Express: 2351

Preț estimativ în valută:
30002 31269$ 24975£

Comandă specială

Livrare economică 14-28 decembrie

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780824706715
ISBN-10: 0824706714
Pagini: 432
Dimensiuni: 152 x 229 x 25 mm
Greutate: 0.74 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Automation and Control Engineering


Public țintă

Professional

Cuprins

1. Introduction: An Overview of Classical Sliding Mode Control 2. Differential Inclusions and Sliding Mode Control 3. Higher-Order Sliding Modes 4. Sliding Mode Observers 5. Dynamic Sliding Mode Control and Output Feedback 6. Sliding Modes, Passivity, and Flatness 7. Stability and Stabilization 8. Discretization Issues 9. Adaptive and Sliding Mode Control 10. Steady Modes in Relay Systems with Delay 11. Sliding Mode Control for Systems with Time Delay 12. Sliding Mode Control of Infinite-Dimensional Systems 13. Application of Sliding Mode Control to Robotic Systems 14. Sliding Modes Control of the Induction Motor: A Benchmark Experimental Test

Notă biografică

Wilfrid Perruquetti, Jean-Pierre Barbot

Descriere

In this book, the authors present new trends in sliding mode control in engineering, providing an historical overview of classical sliding mode and discussing some control domains and methods with a sliding mode point of view.