Source Separation and Machine Learning
Autor Jen-Tzung Chienen Limba Engleză Paperback – 22 oct 2018
- Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning
- Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning
- Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems
Preț: 470.72 lei
Preț vechi: 634.49 lei
-26% Nou
Puncte Express: 706
Preț estimativ în valută:
90.07€ • 95.12$ • 74.96£
90.07€ • 95.12$ • 74.96£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128177969
ISBN-10: 0128177969
Pagini: 384
Dimensiuni: 191 x 235 x 21 mm
Greutate: 0.66 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128177969
Pagini: 384
Dimensiuni: 191 x 235 x 21 mm
Greutate: 0.66 kg
Editura: ELSEVIER SCIENCE
Cuprins
Part I Fundamental Theories1. Introduction2. Model-based blind source separation3. Adaptive learning machine
Part II Advanced Studies4. Independent component analysis5. Nonnegative matrix factorization6. Nonnegative tensor factorization7. Deep neural network8. Summary and Future Trends
Part II Advanced Studies4. Independent component analysis5. Nonnegative matrix factorization6. Nonnegative tensor factorization7. Deep neural network8. Summary and Future Trends