Space-Filling Curves: Universitext
Autor Hans Saganen Limba Engleză Paperback – 2 sep 1994
Din seria Universitext
- 17% Preț: 361.80 lei
- 15% Preț: 532.79 lei
- 15% Preț: 542.16 lei
- Preț: 396.89 lei
- 17% Preț: 427.32 lei
- Preț: 456.24 lei
- 17% Preț: 366.00 lei
- Preț: 351.26 lei
- Preț: 659.84 lei
- 15% Preț: 497.21 lei
- 15% Preț: 499.29 lei
- 17% Preț: 431.50 lei
- Preț: 379.22 lei
- 19% Preț: 393.94 lei
- 17% Preț: 364.56 lei
- Preț: 398.88 lei
- 17% Preț: 363.73 lei
- 17% Preț: 364.81 lei
- Preț: 360.93 lei
- Preț: 356.77 lei
- 17% Preț: 426.76 lei
- Preț: 621.58 lei
- Preț: 478.13 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- 15% Preț: 722.54 lei
- 17% Preț: 369.06 lei
- Preț: 410.25 lei
- 17% Preț: 394.41 lei
- Preț: 399.77 lei
- Preț: 288.94 lei
- Preț: 372.24 lei
- Preț: 436.91 lei
- Preț: 374.69 lei
- 15% Preț: 522.94 lei
- 15% Preț: 486.00 lei
- 15% Preț: 465.23 lei
- Preț: 381.87 lei
- Preț: 474.35 lei
- 15% Preț: 630.46 lei
- Preț: 406.68 lei
- 15% Preț: 590.07 lei
- 20% Preț: 499.94 lei
- 15% Preț: 576.47 lei
- Preț: 373.94 lei
- Preț: 479.99 lei
- Preț: 483.95 lei
- 20% Preț: 325.56 lei
- 15% Preț: 463.79 lei
Preț: 485.19 lei
Preț vechi: 570.81 lei
-15% Nou
Puncte Express: 728
Preț estimativ în valută:
92.86€ • 96.45$ • 77.13£
92.86€ • 96.45$ • 77.13£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387942650
ISBN-10: 0387942653
Pagini: 194
Ilustrații: XV, 194 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387942653
Pagini: 194
Ilustrații: XV, 194 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:Softcover reprint of the original 1st ed. 1994
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1. Introduction.- 1.1. A Brief History of Space-Filling Curves.- 1.2. Notation.- 1.3. Definitions and Netto’s Theorem.- 1.4. Problems.- 2. Hilbert’s Space-Filling Curve.- 2.1. Generation of Hilbert’s Space-Filling Curve.- 2.2. Nowhere Differentiability of the Hilbert Curve.- 2.3. A Complex Representation of the Hilbert Curve.- 2.4. Arithmetization of the Hilbert Curve.- 2.5. An Analytic Proof of the Nowhere Differentiability of the Hilbert Curve.- 2.6. Approximating Polygons for the Hilbert Curve.- 2.7. Moore’s Version of the Hilbert Curve.- 2.8. A Three-Dimensional Hilbert Curve.- 2.9. Problems.- 3. Peano’s Space-Filling Curve.- 3.1. Definition of Peano’s Space-Filling Curve.- 3.2. Nowhere Differentiability of the Peano Curve.- 3.3. Geometric Generation of the Peano Curve.- 3.4. Proof that the Peano Curve and the Geometric Peano Curve are the Same.- 3.5. Cesaro’s Representation of the Peano Curve.- 3.6. Approximating Polygons for the Peano Curve.- 3.7. Wunderlich’s Versions of the Peano Curve.- 3.8. A Three-Dimensional Peano Curve.- 3.9. Problems.- 4. Sierpi?ski’s Space-Filling Curve.- 4.1. Sierpi?ski’s Original Definition.- 4.2. Geometric Generation and Knopp’s Representation of the Sierpi?ski Curve.- 4.3. Representation of the Sierphiski-Knopp Curve in Terms of Quaternaries.- 4.4. Nowhere Differentiability of the Sierpi?ski-Knopp Curve.- 4.5. Approximating Polygons for the Sierpi?ski-Knopp Curve.- 4.6. Pólya’s Generalization of the Sierpi?ski-Knopp Curve.- 4.7. Problems.- 5. Lebesgue’s Space-Filling Curve.- 5.1. The Cantor Set.- 5.2. Properties of the Cantor Set.- 5.3. The Cantor Function and the Devil’s Staircase.- 5.4. Lebesgue’s Definition of a Space-Filling Curve.- 5.5. Approximating Polygons for the Lebesgue Curve.- 5.6. Problems.- 6. Continuous Images of a Line Segment.- 6.1. Preliminary Remarks and a Global Characterization of Continuity.- 6.2. Compact Sets.- 6.3. Connected Sets.- 6.4. Proof of Netto’s Theorem.- 6.5. Locally Connected Sets.- 6.6. A Theoremby Hausdorff.- 6.7. Pathwise Connectedness.- 6.8. The Hahn-Mazurkiewicz Theorem.- 6.9. Generation of Space-Filling Curves by Stochastically Independent Functions.- 6.10. Representation of a Space-Filling Curve by an Analytic Function.- 6.11. Problems.- 7. Schoenberg’s Space-Filling Curve.- 7.1. Definition and Basic Properties.- 7.2. The Nowhere Differentiability of the Schoenberg Curve.- 7.3. Approximating Polygons.- 7.4. A Three-Dimensional Schoenberg Curve.- 7.5. An No-Dimensional Schoenberg Curve.- 7.6. Problems.- 8. Jordan Curves of Positive Lebesgue Measure.- 8.1. Jordan Curves.- 8.2. Osgood’s Jordan Curves of Positive Measure.- 8.3. The Osgood Curves of Sierpi?ski and Knopp.- 8.4. Other Osgood Curves.- 8.5. Problems.- 9. Fractals.- 9.1. Examples.- 9.2. The Space where Fractals are Made.- 9.3. The Invariant Attractor Set.- 9.4. Similarity Dimension.- 9.5. Cantor Curves.- 9.6. The Heighway-Dragon.- 9.7. Problems.- A.1. Computer Programs 169 A.1.1. Computation of the Nodal Points of the Hilbert Curve.- A.1.2. Computation of the Nodal Points of the Peano Curve.- A.1.3. Computation of the Nodal Points of the Sierpi?ski-Knopp Curve.- A.1.4. Plotting Program for the Approximating Polygons of the Schoenberg Curve.- A.2. Theorems from Analysis.- A.2.1. Binary and Other Representations.- A.2.2. Condition for Non-Differentiability.- A.2.3. Completeness of the Euclidean Space.- A.2.4. Uniform Convergence.- A.2.5. Measure of the Intersection of a Decreasing Sequence of Sets.- A.2.6. Cantor’s Intersection Theorem.- A.2.7. Infinite Products.- References.