Cantitate/Preț
Produs

Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue -2: London Mathematical Society Lecture Note Series, cartea 314

Autor Dragoš Cvetkovic, Peter Rowlinson, Slobodan Simic
en Limba Engleză Paperback – 21 iul 2004
Line graphs have the property that their least eigenvalue is greater than or equal to –2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 44044 lei

Preț vechi: 49488 lei
-11% Nou

Puncte Express: 661

Preț estimativ în valută:
8430 8762$ 6983£

Carte tipărită la comandă

Livrare economică 04-18 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780521836630
ISBN-10: 0521836638
Pagini: 310
Ilustrații: 47 b/w illus. 9 tables
Dimensiuni: 154 x 228 x 17 mm
Greutate: 0.4 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:New York, United States

Cuprins

1. Introduction; 2. Forbidden subgraphs; 3. Root systems; 4. Regular graphs; 5. Star complements; 6. The Maximal exceptional graphs; 7. Miscellaneous results.

Recenzii

'… a wealth of detail … this class can now claim to be the best understood corner of graph theory, and this book will be the standard guide.' Bulletin of the London Mathematical Society

Descriere

An important resource for all researchers with an interest in algebraic graph theory.