Stable Homotopy Around the Arf-Kervaire Invariant: Progress in Mathematics, cartea 273
Autor Victor P. Snaithen Limba Engleză Hardback – 19 feb 2009
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 736.64 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 571.05 lei
- Preț: 385.81 lei
- Preț: 388.49 lei
- Preț: 370.50 lei
- Preț: 383.72 lei
- 18% Preț: 717.24 lei
- 15% Preț: 641.51 lei
- 15% Preț: 638.28 lei
- 18% Preț: 882.79 lei
- Preț: 378.64 lei
- Preț: 384.47 lei
- Preț: 372.21 lei
- 15% Preț: 522.66 lei
- 15% Preț: 632.01 lei
- 15% Preț: 639.73 lei
- Preț: 374.84 lei
- Preț: 385.81 lei
- Preț: 391.85 lei
- 15% Preț: 687.50 lei
- Preț: 416.92 lei
- Preț: 379.39 lei
- 18% Preț: 887.42 lei
- 18% Preț: 788.75 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1110.76 lei
- 15% Preț: 485.73 lei
- 15% Preț: 583.11 lei
Preț: 392.61 lei
Nou
Puncte Express: 589
Preț estimativ în valută:
75.17€ • 78.28$ • 62.37£
75.17€ • 78.28$ • 62.37£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764399030
ISBN-10: 3764399031
Pagini: 256
Ilustrații: XIV, 239 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.68 kg
Ediția:2009
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3764399031
Pagini: 256
Ilustrații: XIV, 239 p.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.68 kg
Ediția:2009
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Algebraic Topology Background.- The Arf-Kervaire Invariant via QX.- The Upper Triangular Technology.- A Brief Glimpse of Algebraic K-theory.- The Matrix Corresponding to 1 ? ?3.- Real Projective Space.- Hurewicz Images, BP-theory and the Arf-Kervaire Invariant.- Upper Triangular Technology and the Arf-Kervaire Invariant.- Futuristic and Contemporary Stable Homotopy.
Recenzii
From the reviews:
“This book is concerned with homotopy theoretical approaches to the study of the Arf-Kervaire invariant one problem … . The last chapter is an extra one in which some current themes related to the subject are described. … The bibliography contains 297 titles. … this book an excellent guide to the classical problem above.” (Haruo Minami, Zentralblatt MATH, Vol. 1169, 2009)
“This book provides a clean, self-contained treatment of a long-standing piece of algebraic topology: the Kervaire invariant one problem, and the reviewer found it a very interesting and helpful reference. … The book itself is a very pleasant read. … The reviewer found the opening quotations for each chapter especially droll. … Finally, the chapter (and book) ends with some suggestions for further reading.” (Michael A. Hill, Mathematical Reviews, Issue 2011 d)
“This book is concerned with homotopy theoretical approaches to the study of the Arf-Kervaire invariant one problem … . The last chapter is an extra one in which some current themes related to the subject are described. … The bibliography contains 297 titles. … this book an excellent guide to the classical problem above.” (Haruo Minami, Zentralblatt MATH, Vol. 1169, 2009)
“This book provides a clean, self-contained treatment of a long-standing piece of algebraic topology: the Kervaire invariant one problem, and the reviewer found it a very interesting and helpful reference. … The book itself is a very pleasant read. … The reviewer found the opening quotations for each chapter especially droll. … Finally, the chapter (and book) ends with some suggestions for further reading.” (Michael A. Hill, Mathematical Reviews, Issue 2011 d)
Caracteristici
Introduction of the new “upper triangular technology” method Detailed application of upper triangular technology to operations in algebraic K-theory and to the Arf-Kervaire invariant problem. An account of the relation of the book’s classical stable homotopy theory results to the important, new motivic stable homotopy theory of Morel-Voevodsky Includes supplementary material: sn.pub/extras