Cantitate/Preț
Produs

Stochastic Approximation and Its Applications: Nonconvex Optimization and Its Applications, cartea 64

Autor Han-Fu Chen
en Limba Engleză Hardback – 31 aug 2002
Estimating unknown parameters based on observation data conta- ing information about the parameters is ubiquitous in diverse areas of both theory and application. For example, in system identification the unknown system coefficients are estimated on the basis of input-output data of the control system; in adaptive control systems the adaptive control gain should be defined based on observation data in such a way that the gain asymptotically tends to the optimal one; in blind ch- nel identification the channel coefficients are estimated using the output data obtained at the receiver; in signal processing the optimal weighting matrix is estimated on the basis of observations; in pattern classifi- tion the parameters specifying the partition hyperplane are searched by learning, and more examples may be added to this list. All these parameter estimation problems can be transformed to a root-seeking problem for an unknown function. To see this, let - note the observation at time i. e. , the information available about the unknown parameters at time It can be assumed that the parameter under estimation denoted by is a root of some unknown function This is not a restriction, because, for example, may serve as such a function.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62603 lei  6-8 săpt.
  Springer Us – 10 dec 2010 62603 lei  6-8 săpt.
Hardback (1) 63224 lei  6-8 săpt.
  Springer Us – 31 aug 2002 63224 lei  6-8 săpt.

Din seria Nonconvex Optimization and Its Applications

Preț: 63224 lei

Preț vechi: 74381 lei
-15% Nou

Puncte Express: 948

Preț estimativ în valută:
12099 12688$ 10089£

Carte tipărită la comandă

Livrare economică 07-21 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402008061
ISBN-10: 1402008066
Pagini: 380
Ilustrații: XV, 360 p.
Dimensiuni: 156 x 234 x 30 mm
Greutate: 0.71 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Nonconvex Optimization and Its Applications

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Robbins-Monro Algorithm.- Stochastic Approximation Algorithms with Expanding Truncations.- Asymptotic Properties of Stochastic Approximation Algorithms.- Optimization by Stochastic Approximation.- Application to Signal Processing.- Application to Systems and Control.