Cantitate/Preț
Produs

Stochastic Processes in Epidemic Theory: Proceedings of a Conference held in Luminy, France, October 23–29, 1988: Lecture Notes in Biomathematics, cartea 86

Editat de Jean Pierre Gabriel, Claude Lefevre, Philippe Picard
en Limba Engleză Paperback – 12 iun 1990
This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.
Citește tot Restrânge

Din seria Lecture Notes in Biomathematics

Preț: 37751 lei

Nou

Puncte Express: 566

Preț estimativ în valută:
7226 7577$ 5970£

Carte tipărită la comandă

Livrare economică 30 ianuarie-13 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540525714
ISBN-10: 3540525718
Pagini: 216
Ilustrații: VIII, 197 p. 1 illus.
Dimensiuni: 170 x 244 x 11 mm
Greutate: 0.35 kg
Ediția:1990
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Biomathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

From the contents: N.T.J. Bailey: Application of stochastic epidemic modelling in the public health control of HIV/AIDS. - L. Billard, G.F. Medley, R.M. Anderson: The incubation period for the AIDS Virus.- N. Keiding, B.E. Hansen, C. Holst: Nonparametric estimation of disease incidence from a cross-sectional sample of a stationary population. - R.J. Kryscio, M.-P. Malice: On modeling the incidence of AIDS. - I. Nåsell: Malaria infection with relapses and misdiagnosis. - F. Ball: A new look at Downton's carrier-borne epidemic model. - A. Barbour, D. Mollison: Epidemics and random graphs. - N. Becker, I. Marschner: The effect of heterogeneity on the spread of disease. - P. Blanchard, G.F. Bolz, T. Krüger: Modelling AIDS-epidemics or any venereal disease on random graphs. - V. Capasso: A counting process approach for age-dependent epidemic systems.