Cantitate/Preț
Produs

Stochastic Programming: Mathematics and Its Applications, cartea 324

Autor András Prékopa
en Limba Engleză Hardback – 31 iul 1995
Stochastic programming - the science that provides us with tools to design and control stochastic systems with the aid of mathematical programming techniques - lies at the intersection of statistics and mathematical programming. The book Stochastic Programming is a comprehensive introduction to the field and its basic mathematical tools. While the mathematics is of a high level, the developed models offer powerful applications, as revealed by the large number of examples presented. The material ranges form basic linear programming to algorithmic solutions of sophisticated systems problems and applications in water resources and power systems, shipbuilding, inventory control, etc.
Audience: Students and researchers who need to solve practical and theoretical problems in operations research, mathematics, statistics, engineering, economics, insurance, finance, biology and environmental protection.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 136714 lei  43-57 zile
  SPRINGER NETHERLANDS – 15 dec 2010 136714 lei  43-57 zile
Hardback (1) 137348 lei  43-57 zile
  SPRINGER NETHERLANDS – 31 iul 1995 137348 lei  43-57 zile

Din seria Mathematics and Its Applications

Preț: 137348 lei

Preț vechi: 167498 lei
-18% Nou

Puncte Express: 2060

Preț estimativ în valută:
26286 27304$ 21834£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780792334828
ISBN-10: 0792334825
Pagini: 600
Ilustrații: XVIII, 600 p.
Dimensiuni: 156 x 234 x 33 mm
Greutate: 1.04 kg
Ediția:1995
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 General Theory of Linear Programming.- 2 Convex Polyhedra.- 3 Special Problems and Methods.- 4 Logconcave and Quasi-Concave Measures.- 5 Moment Problems.- 6 Bounding and Approximation of Probabilities.- 7 Statistical Decisions.- 8 Static Stochastic Programming Models.- 9 Solutions of the Simple Recourse Problem.- 10 Convexity Theory of Probabilistic Constrained Problems.- 11 Programming under Probabilistic Constraint and Maximizing Probabilities under Constraints.- 12 Two-Stage Stochastic Programming Problems.- 13 Multi-Stage Stochastic Programming Problems.- 14 Special Cases and Selected Applications.- 15 Distribution Problems.- Appendix. The Multivariate Normal Distribution.- Author Index.