Cantitate/Preț
Produs

Symmetric and G-algebras: With Applications to Group Representations: Mathematics and Its Applications, cartea 60

Autor Gregory Karpilovsky
en Limba Engleză Paperback – 4 oct 2011

Din seria Mathematics and Its Applications

Preț: 62904 lei

Preț vechi: 74005 lei
-15% Nou

Puncte Express: 944

Preț estimativ în valută:
12038 12624$ 10038£

Carte tipărită la comandă

Livrare economică 07-21 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789401067560
ISBN-10: 9401067562
Pagini: 388
Ilustrații: 384 p.
Dimensiuni: 170 x 244 x 20 mm
Greutate: 0.62 kg
Ediția:Softcover reprint of the original 1st ed. 1990
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1. Preliminaries.- 1. Notation and terminology.- 2. Artinian, noetherian and semisimple modules.- 3. Semisimple modules.- 4. The radical and socle of modules and rings.- 5. The Krull-Schmidt theorem.- 6. Matrix rings.- 7. The Wedderburn-Artin theorem.- 8. Tensor products.- 9. Croup algebras.- 2. Frobenius and symmetric algebras.- 1. Definitions and elementary properties.- 2. Frobenius crossed products.- 3. Symmetric crossed products.- 4. Symmetric endomorphism algebras.- 5. Projective covers and injective hulls.- 6. Classical results.- 7. Frobenius uniserial algebras.- 8. Characterizations of Frobenius algebras.- 9. Characters of symmetric algebras.- 10. Applications to projective modular representations.- 11. Külshammer’s theorems.- 12. Applications.- 3. Symmetric local algebras.- 1. Symmetric local algebras A with dimFZ(A) ? 4.- 2. Some technical lemmas.- 3. Symmetric local algebras A with dimFZ(A) = 5.- 4. Applications to modular representations.- 4. G-algebras and their applications.- 1. The trace map.- 2. Permutation G-algebras.- 3. Algebras over complete noetherian local rings.- 4. Defect groups in G-algebras.- 5. Relative projective and injective modules.- 6. Vertices as defect groups.- 7. The G-algebra EndR((1H)G).- 8. An application: The Robinson’s theorem.- 9. The Brauer morphism.- 10. Points and pointed groups.- 11. Interior G-algebras.- 12. Bilinear forms on G-algebras.