Symplectic Geometry and Analytical Mechanics: Mathematics and Its Applications, cartea 35
Autor P. Libermann, Charles-Michel Marleen Limba Engleză Hardback – 31 mar 1987
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1111.44 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 mar 1987 | 1111.44 lei 6-8 săpt. | |
Hardback (1) | 1117.86 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 mar 1987 | 1117.86 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 938.64 lei
- 15% Preț: 643.65 lei
- 15% Preț: 647.19 lei
- 15% Preț: 587.25 lei
- Preț: 391.39 lei
- 18% Preț: 948.52 lei
- 15% Preț: 582.54 lei
- 5% Preț: 650.34 lei
- 15% Preț: 653.86 lei
- 15% Preț: 643.80 lei
- 15% Preț: 600.39 lei
- Preț: 391.98 lei
- 15% Preț: 647.05 lei
- Preț: 374.76 lei
- Preț: 391.60 lei
- 15% Preț: 701.11 lei
- Preț: 388.14 lei
- Preț: 386.85 lei
- 15% Preț: 580.76 lei
- 15% Preț: 649.17 lei
- 15% Preț: 582.72 lei
- 20% Preț: 577.42 lei
- Preț: 392.56 lei
- 15% Preț: 597.46 lei
- 15% Preț: 590.15 lei
- 15% Preț: 647.05 lei
- 15% Preț: 644.30 lei
- Preț: 389.33 lei
- 15% Preț: 644.30 lei
- 15% Preț: 638.75 lei
- Preț: 386.63 lei
Preț: 1117.86 lei
Preț vechi: 1363.25 lei
-18% Nou
Puncte Express: 1677
Preț estimativ în valută:
214.06€ • 220.56$ • 179.63£
214.06€ • 220.56$ • 179.63£
Carte tipărită la comandă
Livrare economică 22 februarie-08 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027724380
ISBN-10: 9027724385
Pagini: 546
Ilustrații: XVI, 526 p.
Dimensiuni: 210 x 297 x 35 mm
Greutate: 0.94 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 9027724385
Pagini: 546
Ilustrații: XVI, 526 p.
Dimensiuni: 210 x 297 x 35 mm
Greutate: 0.94 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
I. Symplectic vector spaces and symplectic vector bundles.- 1: Symplectic vector spaces.- 1. Properties of exterior forms of arbitrary degree.- 2. Properties of exterior 2-forms.- 3. Symplectic forms and their automorphism groups.- 4. The contravariant approach.- 5. Orthogonality in a symplectic vector space.- 6. Forms induced on a vector subspace of a symplectic vector space.- 7. Additional properties of Lagrangian subspaces.- 8. Reduction of a symplectic vector space. Generalizations.- 9. Decomposition of a symplectic form.- 10. Complex structures adapted to a symplectic structure.- 11. Additional properties of the symplectic group.- 2: Symplectic vector bundles.- 12. Properties of symplectic vector bundles.- 13. Orthogonality and the reduction of a symplectic vector bundle.- 14. Complex structures on symplectic vector bundles.- 3: Remarks concerning the operator ? and Lepage’s decomposition theorem.- 15. The decomposition theorem in a symplectic vector space.- 16. Decomposition theorem for exterior differential forms.- 17. A first approach to Darboux’s theorem.- II. Semi-basic and vertical differential forms in mechanics.- 1. Definitions and notations.- 2. Vector bundles associated with a surjective submersion.- 3. Semi-basic and vertical differential forms.- 4. The Liouville form on the cotangent bundle.- 5. Symplectic structure on the cotangent bundle.- 6. Semi-basic differential forms of arbitrary degree.- 7. Vector fields and second-order differential equations.- 8. The Legendre transformation on a vector bundle.- 9. The Legendre transformation on the tangent and cotangent bundles.- 10. Applications to mechanics: Lagrange and Hamilton equations.- 11. Lagrange equations and the calculus of variations.- 12. The Poincaré-Cartan integral invariant.- 13.Mechanical systems with time dependent Hamiltonian or Lagrangian functions.- III. Symplectic manifolds and Poisson manifolds.- 1. Symplectic manifolds; definition and examples.- 2. Special submanifolds of a symplectic manifold.- 3. Symplectomorphisms.- 4. Hamiltonian vector fields.- 5. The Poisson bracket.- 6. Hamiltonian systems.- 7. Presymplectic manifolds.- 8. Poisson manifolds.- 9. Poisson morphisms.- 10. Infinitesimal automorphisms of a Poisson structure.- 11. The local structure of Poisson manifolds.- 12. The symplectic foliation of a Poisson manifold.- 13. The local structure of symplectic manifolds.- 14. Reduction of a symplectic manifold.- 15. The Darboux-Weinstein theorems.- 16. Completely integrable Hamiltonian systems.- 17. Exercises.- IV. Action of a Lie group on a symplectic manifold.- 1. Symplectic and Hamiltonian actions.- 2. Elementary properties of the momentum map.- 3. The equivariance of the momentum map.- 4. Actions of a Lie group on its cotangent bundle.- 5. Momentum maps and Poisson morphisms.- 6. Reduction of a symplectic manifold by the action of a Lie group.- 7. Mutually orthogonal actions and reduction.- 8. Stationary motions of a Hamiltonian system.- 9. The motion of a rigid body about a fixed point.- 10. Euler’s equations.- 11. Special formulae for the group SO(3).- 12. The Euler-Poinsot problem.- 13. The Euler-Lagrange and Kowalevska problems.- 14. Additional remarks and comments.- 15. Exercises.- V. Contact manifolds.- 1. Background and notations.- 2. Pfaffian equations.- 3. Principal bundles and projective bundles.- 4. The class of Pfaffian equations and forms.- 5. Darboux’s theorem for Pfaffian forms and equations.- 6. Strictly contact structures and Pfaffian structures.- 7. Protectable Pfaffian equations.- 8. Homogeneous Pfaffianequations.- 9. Liouville structures.- 10. Fibered Liouville structures.- 11. The automorphisms of Liouville structures.- 12. The infinitesimal automorphisms of Liouville structures.- 13. The automorphisms of strictly contact structures.- 14. Some contact geometry formulae in local coordinates.- 15. Homogeneous Hamiltonian systems.- 16. Time-dependent Hamiltonian systems.- 17. The Legendre involution in contact geometry.- 18. The contravariant point of view.- Appendix 1. Basic notions of differential geometry.- 1. Differentiable maps, immersions, submersions.- 2. The flow of a vector field.- 3. Lie derivatives.- 4. Infinitesimal automorphisms and conformai infinitesimal transformations.- 5. Time-dependent vector fields and forms.- 6. Tubular neighborhoods.- 7. Generalizations of Poincaré’s lemma.- Appendix 2. Infinitesimal jets.- 1. Generalities..- 2. Velocity spaces.- 3. Second-order differential equations.- 4. Sprays and the exponential mapping.- 5. Covelocity spaces.- 6. Liouville forms on jet spaces.- Appendix 3. Distributions, Pfaffian systems and foliations.- 1. Distributions and Pfaffian systems.- 2. Completely integrable distributions.- 3. Generalized foliations defined by families of vector fields.- 4. Differentiable distributions of constant rank.- Appendix 4. Integral invariants.- 1. Integral invariants of a vector field.- 2. Integral invariants of a foliation.- 3. The characteristic distribution of a differential form.- Appendix 5. Lie groups and Lie algebras.- 1. Lie groups and Lie algebras; generalities.- 2. The exponential map.- 3. Action of a Lie group on a manifold.- 4. The adjoint and coadjoint representations.- 5. Semi-direct products.- 6. Notions regarding the cohomology of Lie groups and Lie algebras.- 7. Affine actions of Lie groups and Liealgebras.- Appendix 6. The Lagrange-Grassmann manifold.- 1. The structure of the Lagrange-Grassmann manifold.- 2. The signature of a Lagrangian triplet.- 3. The fundamental groups of the symplectic group and of the Lagrange-Grassmann manifold.- Appendix 7. Morse families and Lagrangian submanifolds.- 1. Lagrangian submanifolds of a cotangent bundle.- 2. Hamiltonian systems and first-order partial differential equations.- 3. Contact manifolds and first-order partial differential equations.- 4. Jacobi’s theorem.- 5. The Hamilton-Jacobi equation for autonomous systems.- 6. The Hamilton-Jacobi equation for non autonomous systems.
Recenzii
` .. although orginally written in French, the translation by B.E. Schwartzbach is very good and the exposition thorough and careful. This book is a welcome addition to the literature. It will surely prove useful as a reference... '
Bulletin of the American Mathematical Society, Vol.20 No. 1, Jan.1989
Bulletin of the American Mathematical Society, Vol.20 No. 1, Jan.1989