Cantitate/Preț
Produs

The B−L Phase Transition: Implications for Cosmology and Neutrinos: Springer Theses

Autor Kai Schmitz
en Limba Engleză Hardback – 14 noi 2013
Several of the very foundations of the cosmological standard model — the baryon asymmetry of the universe, dark matter, and the origin of the hot big bang itself — still call for an explanation from the perspective of fundamental physics. This work advocates one intriguing possibility for a consistent cosmology that fills in the theoretical gaps while being fully in accordance with the observational data. At very high energies, the universe might have been in a false vacuum state that preserved B-L, the difference between the baryon number B and the lepton number L as a local symmetry. In this state, the universe experienced a stage of hybrid inflation that only ended when the false vacuum became unstable and decayed, in the course of a waterfall transition, into a phase with spontaneously broken B-L symmetry. This B-L Phase Transition was accompanied by tachyonic preheating that transferred almost the entire energy of the false vacuum into a gas of B-L Higgs bosons, which in turn decayed into heavy Majorana neutrinos. Eventually, these neutrinos decayed into massless radiation, thereby producing the entropy of the hot big bang, generating the baryon asymmetry of the universe via the leptogenesis mechanism and setting the stage for the production of dark matter. Next to a variety of conceptual novelties and phenomenological predictions, the main achievement of the thesis is hence the fascinating notion that the leading role in the first act of our universe might have actually been played by neutrinos.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61921 lei  6-8 săpt.
  Springer International Publishing – 27 aug 2016 61921 lei  6-8 săpt.
Hardback (1) 62523 lei  6-8 săpt.
  Springer International Publishing – 14 noi 2013 62523 lei  6-8 săpt.

Din seria Springer Theses

Preț: 62523 lei

Preț vechi: 73557 lei
-15% Nou

Puncte Express: 938

Preț estimativ în valută:
11965 12584$ 9967£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319009629
ISBN-10: 3319009621
Pagini: 220
Ilustrații: XIII, 221 p. 19 illus., 10 illus. in color.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.51 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Early Universe Cosmology.- Framework for a Consistent Cosmology.- Neutrino Phenomenology.- Supersymmetric Abelian Higgs Model.- Nonperturbative Dynamics.- The Reheating Process.- WIMP Dark Matter from Heavy Gravitino Decays.

Textul de pe ultima copertă

Several of the very foundations of the cosmological standard model — the baryon asymmetry of the universe, dark matter, and the origin of the hot big bang itself — still call for an explanation from the perspective of fundamental physics. This work advocates one intriguing possibility for a consistent cosmology that fills in the theoretical gaps while being fully in accordance with the observational data. At very high energies, the universe might have been in a false vacuum state that preserved B-L, the difference between the baryon number B and the lepton number L as a local symmetry. In this state, the universe experienced a stage of hybrid inflation that only ended when the false vacuum became unstable and decayed, in the course of a waterfall transition, into a phase with spontaneously broken B-L symmetry. This B-L Phase Transition was accompanied by tachyonic preheating that transferred almost the entire energy of the false vacuum into a gas of B-L Higgs bosons, which in turn decayed into heavy Majorana neutrinos.
Eventually, these neutrinos decayed into massless radiation, thereby producing the entropy of the hot big bang, generating the baryon asymmetry of the universe via the leptogenesis mechanism and setting the stage for the production of dark matter. Next to a variety of conceptual novelties and phenomenological predictions, the main achievement of the thesis is hence the fascinating notion that the leading role in the first act of our universe might have actually been played by neutrinos.

Caracteristici

Nominated as an outstanding Ph.D. thesis by the Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany Offers a consistent and testable picture of the origin of the hot early universe Presents a detailed and time-resolved description of the reheating process after inflation Includes an extensive introduction to early universe cosmology, accessible to non-specialists Includes supplementary material: sn.pub/extras