Cantitate/Preț
Produs

The Preparation of Nano Composites and Their Applications in Solar Energy Conversion: Springer Theses

Autor Nailiang Yang
en Limba Engleză Hardback – 31 oct 2016
This book mainly focuses on the solar energy conversion with the nanomaterials. It describes the applications on two dimensional carbon nanomaterials: graphene and graphdiyne. Also, works on conductive polymer and bio-inspired material is included. The work described here is the first few reports on the applications of graphene, which becomes one of the hottest materials nowadays. This work also proves and studies the charge transfer between the semi-conductor and graphene interface, which is benefit to the applications in solar cells and photocatalysis. At the same time, method to synthesize and assemble the given nanomaterials (TiO2 nanosheets, gold nanoparticles, graphene, PS-PAA, PANI) is detailed, which is easier to the readers to repeat the experiments.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63237 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 29 iun 2018 63237 lei  6-8 săpt.
Hardback (1) 63843 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 31 oct 2016 63843 lei  6-8 săpt.

Din seria Springer Theses

Preț: 63843 lei

Preț vechi: 75110 lei
-15% Nou

Puncte Express: 958

Preț estimativ în valută:
12219 12707$ 10225£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783662534830
ISBN-10: 3662534835
Pagini: 240
Ilustrații: XV, 113 p. 56 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.36 kg
Ediția:1st ed. 2017
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Theses

Locul publicării:Berlin, Heidelberg, Germany

Cuprins

Introduction.- Two-Dimensional Graphene Bridges to Enhance Photoinduced Charge Transport in Dye-Sensitized Solar Cells.- Granum-Like Stacking Structures for Improving Photo-electric Conversion.- Enhanced Light Harvesting in Plasmonic Dye-Sensitized Solar Cells by Using Plasmonic Effect.- Photocatalytic Properties of Graphdiyne and Graphene Modified TiO2: From Theory to Experiment.- Conclusion and Outlook.

Notă biografică

Honors:
-Baosteel Outstanding Student Award (Ministry of Education, China)
-Institute Chief Award (IPE)
-Outstanding Graduates (Sun Yat-sen University)
-Special Award in National Chemistry Experiment Skills Competition for Colleges (Ministry of Education, China)
-The First Prize Scholarship (Sun Yat-sen University)
-Dupont Scholarship (Sun Yat-sen University)
-LG Chemical Scholarship (Sun Yat-sen University)
-ICI Scholarship (Sun Yat-sen University)

Publication list
-Z. Yang†, N. Yang†, J. Yang, J. Bergström and M.-P. Pileni, Adv. Funct. Mater. 2015 [†Contributed equally]
-N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li and D. Wang, ACS Nano, 2013, 7, 1504.
-N. Yang, Y. Zhang, J. E. Halpert, J Zhai, D. Wang and L. Jiang, Small, 2012, 8, 1762.
-N. Yang, Q. Yuan, J. Zhai, T. Wei, D. Wang and L. Jiang, ChemSusChem, 2012, 5,572.
-N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, ACS Nano, 2010, 4, 887.
-N. Yang, J. Zhai, M. Wan, D. Wang and L. Jiang, Synth. Metal, 2010, 1610, 1617.
-H Tang, CM Hessel, J Wang, N. Yang, R Yu, H Zhao, D Wang, Chem. Soc. Rev., 2014, 43, 4281.
-J Wang, N. Yang, H Tang, Z Dong, Q Jin, M Yang, D Kisailus, H Zhao, Z. Tang and D. Wang, Angew. Chem., 2013, 125, 6545.
-H Tang, H Yin, J Wang, N. Yang, D Wang and Z Tang, Angew. Chem., 2013, 125, 5695.
-L. Yi, Y. Liu, N. Yang, Z. Tang and D. Wang, Energy Environ. Sci., 2013, 6 , 835.
-K Wang, S Wan, Q Liu, N. Yang and J Zhai, RSC Advances, 2013, 3, 23755
-Z. Dong, X. Lai, J. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang and L. Jiang, Adv. Mater., 2012, 24, 1046.
-J. Du, X. Lai, N. Yang, J. Zhai, K. David, F. B. Su, D. Wang and L. Jiang, ACS Nano, 2010, 5, 590.
-L. Heng, X. Wang, N. Yang, J. Zhai, M. Wan and L. Jiang, Adv. Funct. Mater., 2010, 20, 226.
-L. Wen, X. Liu, N. Yang, J. Zhai, C. Huang, Y. Li, L. Jiang, Appl. Phys. Lett., 2010, 97, 253111.
-X. Wang, L. Heng, N. Yang, Q. Xie and J. Zhai, Chin. Chem. Lett., 2010, 21, 884.
-X. Lai, H. Wang, D. Mao, N. Yang, J. Yao, C. Xing, D. Wang and X. Li, Mater. Lett., 2008, 62, 3868.
-J. Wang, Z. Lin, Y. Ou, N. Yang, Y. Zhang, M. Tong, Inorg. Chem., 2008, 47, 190.

Textul de pe ultima copertă

This book mainly focuses on the solar energy conversion with the nanomaterials. It describes the applications on two dimensional carbon nanomaterials: graphene and graphdiyne. Also, works on conductive polymer and bio-inspired material is included. The work described here is the first few reports on the applications of graphene, which becomes one of the hottest materials nowadays. This work also proves and studies the charge transfer between the semi-conductor and graphene interface, which is benefit to the applications in solar cells and photocatalysis. At the same time, method to synthesize and assemble the given nanomaterials (TiO2 nanosheets, gold nanoparticles, graphene, PS-PAA, PANI) is detailed, which is easier to the readers to repeat the experiments.

Caracteristici

Nominated as an outstanding thesis by University of Chinese Academy of Sciences Shares many tips and insights into introducing graphene into the dye-sensitized solar cells Enriches understanding of the electron transport between the TiO2 and graphene interface Provides complete instructions for making a TiO2 nanosheet-graphene composite and studies the charge transport in this stacking structure Summarizes the latest studies on the fabrication of the layered conductive polymer by using grapheme oxide as the template Explains how to modify the structure of the counter electrode with gold to enhance the optical path length through the plasmonic and reflection effects Summarizes the latest studies on TiO2(001)-graphdiyne and TiO2(001)-graphene composites in the photocatalytic degradation reaction Includes supplementary material: sn.pub/extras