Cantitate/Preț
Produs

Thermal Transport in Semiconductors: First Principles and Phonon Hydrodynamics: Springer Theses

Autor Pol Torres Alvarez
en Limba Engleză Hardback – 14 iul 2018
Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.   
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 63468 lei  6-8 săpt.
  Springer International Publishing – feb 2019 63468 lei  6-8 săpt.
Hardback (1) 64088 lei  6-8 săpt.
  Springer International Publishing – 14 iul 2018 64088 lei  6-8 săpt.

Din seria Springer Theses

Preț: 64088 lei

Preț vechi: 75397 lei
-15% Nou

Puncte Express: 961

Preț estimativ în valută:
12266 12758$ 10279£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319949826
ISBN-10: 3319949829
Pagini: 165
Ilustrații: XV, 163 p. 88 illus., 58 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.43 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Thermal Transport.- First Principles Calculations.- Thermal Transport of Bulk Semiconductors in the KCM.- Low Dimension Thermal Conductivity in the KCM.- Phonon Spectrum and Transient Regimes in the KCM.- Geometric Effects in Complex Experiments.- Conclusions.

Notă biografică

Pol Torres' scientific and professional career is based on a background in physics and energy engineering complemented with master studies in nanotechnology and materials science. His research career started with experimental and theoretical work on the thermal decomposition of precursors to synthetize and characterize superconductor samples. His doctoral work focused on a theoretical study of thermal transport in semiconductors within a microscopic and macroscopic framework.  

Textul de pe ultima copertă

Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.   

Caracteristici

Nominated as an outstanding Ph.D thesis by the Autonomous University of Barcelona, Spain Provides a broad overview of thermal transport in semiconductors from a microscopic and macroscopic perspective Includes didactic explanations supported by experimental data and extensive bibliography Explores new phenomena of heat transport based on a fluid-like behavior