Turbulent Heating and Anisotropy in the Solar Wind: A Numerical Study: Springer Theses
Autor Victor Montagud-Campsen Limba Engleză Hardback – 23 oct 2019
This book presents two important new findings. First, it demonstrates from first principles that turbulent heating offers an explanation for the non-adiabatic decay of proton temperature in solar wind. Until now, this was only proved with reduced or phenomenological models. Second, the book demonstrates that the two types of anisotropy of turbulent fluctuations that are observed in solar wind at 1AU originate not only from two distinct classes of conditions near the Sun but also from the imbalance in Alfvén wave populations. These anisotropies do not affect the overall turbulent heating if we take into account the relation observed in solar wind between anisotropy and Alfvén wave imbalance.
In terms of the methods used to obtain these achievements, the author shows the need to find a very delicate balance between turbulent decay and expansion losses, so as to directly solve the magnetohydrodynamic equations, including the wind expansion effects.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 620.21 lei 6-8 săpt. | |
Springer International Publishing – 23 oct 2020 | 620.21 lei 6-8 săpt. | |
Hardback (1) | 626.15 lei 6-8 săpt. | |
Springer International Publishing – 23 oct 2019 | 626.15 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.53 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.82 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.68 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.89 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 626.15 lei
Preț vechi: 736.65 lei
-15% Nou
Puncte Express: 939
Preț estimativ în valută:
119.87€ • 124.60$ • 99.39£
119.87€ • 124.60$ • 99.39£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030303822
ISBN-10: 3030303829
Pagini: 123
Ilustrații: XVII, 123 p. 45 illus., 13 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.38 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3030303829
Pagini: 123
Ilustrații: XVII, 123 p. 45 illus., 13 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.38 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Solar Wind.- Plasma description.- Turbulence.- Solar Wind turbulence.- Plan of this thesis.- The Maltese Cross revisited.- Parameters and initial conditions.- Defining spectral properties in EBM simulations.- Results.- Discussion.- Can the Maltese Cross heat?.- Paper ApJ 2018: "Turbulent Heating between 0.2 and 1 au: A Numerical Study".- Heating fast winds.- Conclusions and future work.- Conclusions.- Future work: Anisotropy temperature description.- Appendix.
Notă biografică
Victor Montagud Camps holds a bachelor degrees in mathematics and physics from the Universitat Autonoma de Barcelona (UAB) and a Master's degree in plasma physics from the Université Pierre et Marie Curie (UPMC). He obtained his Ph.D. in 2018 from the Université Paris-Saclay (prepared at Université Paris-Sud) under the supervision of Dr. Roland Grappin and Dr. Filippo Pantellini. During his thesis he has been author and co-author of scientific papers published in The Astrophysical Journal, Solar Physics and Il nuovo cimento. He now works at the department of Surface and Plasma Science of Charles University (Czech Republic) as a postdoctoral fellow.
Textul de pe ultima copertă
This book presents two important new findings. First, it demonstrates from first principles that turbulent heating offers an explanation for the non-adiabatic decay of proton temperature in solar wind. Until now, this was only proved with reduced or phenomenological models. Second, the book demonstrates that the two types of anisotropy of turbulent fluctuations that are observed in solar wind at 1AU originate not only from two distinct classes of conditions near the Sun but also from the imbalance in Alfvén wave populations. These anisotropies do not affect the overall turbulent heating if we take into account the relation observed in solar wind between anisotropy and Alfvén wave imbalance.
In terms of the methods used to obtain these achievements, the author shows the need to find a very delicate balance between turbulent decay and expansion losses, so as to directly solve the magnetohydrodynamic equations, including the wind expansion effects.
Caracteristici
Nominated as an outstanding PhD thesis by the Physics Department of Paris-Sud University, Orsay, France Proves for the first time, using direct numerical simulations, that turbulent heating is one of the main contributors to solar wind heating between 0.3 and 1AU Demonstrates that the observed turbulent wave vector anisotropy at 1AU is linked to turbulent anisotropy near the Sun, and to the imbalance of Alfvén wave populations Provides results that allow us to hypothesize on the properties of solar wind turbulence near the Sun, at the end of the so-called acceleration region of the wind, and which could be verified by Parker Solar Probe and Solar Orbiter missions