Cantitate/Preț
Produs

Units in Skew Fields: Progress in Mathematics, cartea 186

Autor Ernst Kleinert
en Limba Engleză Paperback – 29 oct 2012
This book is devoted to a study of the unit groups of orders in skew fields, finite dimensional and central over the rational field; it thereby belongs to the field of noncommutative arithmetic. Its purpose is a synopsis of results and methods, including full proofs of the most important results. It is addressed to researchers in number theory and arithmetic groups.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 37013 lei  6-8 săpt.
  Birkhäuser Basel – 29 oct 2012 37013 lei  6-8 săpt.
Hardback (1) 56428 lei  6-8 săpt.
  Birkhauser – 31 mar 2000 56428 lei  6-8 săpt.

Din seria Progress in Mathematics

Preț: 37013 lei

Nou

Puncte Express: 555

Preț estimativ în valută:
7086 7287$ 5878£

Carte tipărită la comandă

Livrare economică 17 februarie-03 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783034895552
ISBN-10: 3034895550
Pagini: 92
Ilustrații: VIII, 80 p.
Dimensiuni: 155 x 235 x 5 mm
Greutate: 0.14 kg
Ediția:Softcover reprint of the original 1st ed. 2000
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

0 Basic Facts.- 1 Hey’s Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis’ Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan’s property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.