Vorlesungen über Wahrscheinlichkeitstheorie: Teubner Studienbücher Mathematik
Autor Norbert Schmitzde Limba Germană Paperback – 1996
Din seria Teubner Studienbücher Mathematik
- Preț: 358.24 lei
- Preț: 269.23 lei
- Preț: 339.20 lei
- Preț: 344.03 lei
- Preț: 204.15 lei
- Preț: 265.82 lei
- Preț: 301.92 lei
- Preț: 286.64 lei
- Preț: 341.46 lei
- Preț: 248.76 lei
- Preț: 298.12 lei
- Preț: 341.83 lei
- Preț: 340.15 lei
- Preț: 305.80 lei
- Preț: 303.23 lei
- Preț: 469.71 lei
- Preț: 460.79 lei
- Preț: 347.94 lei
- Preț: 401.04 lei
- Preț: 302.82 lei
- Preț: 462.26 lei
- Preț: 334.75 lei
- Preț: 460.43 lei
- Preț: 398.27 lei
- Preț: 305.07 lei
- Preț: 460.06 lei
- Preț: 467.87 lei
- Preț: 303.60 lei
- Preț: 338.84 lei
- Preț: 303.60 lei
- Preț: 395.69 lei
- Preț: 178.82 lei
- Preț: 342.56 lei
- Preț: 341.46 lei
- Preț: 471.91 lei
- Preț: 306.00 lei
- Preț: 336.63 lei
- Preț: 467.70 lei
- Preț: 403.28 lei
- Preț: 215.11 lei
Preț: 344.96 lei
Nou
Puncte Express: 517
Preț estimativ în valută:
66.02€ • 69.82$ • 55.07£
66.02€ • 69.82$ • 55.07£
Carte tipărită la comandă
Livrare economică 30 decembrie 24 - 13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783519025726
ISBN-10: 3519025728
Pagini: 436
Ilustrații: VII, 424 S.
Dimensiuni: 140 x 216 x 23 mm
Greutate: 0.5 kg
Ediția:1996
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Teubner Studienbücher Mathematik
Locul publicării:Wiesbaden, Germany
ISBN-10: 3519025728
Pagini: 436
Ilustrații: VII, 424 S.
Dimensiuni: 140 x 216 x 23 mm
Greutate: 0.5 kg
Ediția:1996
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Teubner Studienbücher Mathematik
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
§1 Das wahrscheinlichkeitstheoretische Modell.- 1.1 Einleitung.- 1.2 Die Axiome von Kolmogoroff.- 1.3 Realität — Modell.- 1.4 Aufgaben.- §2 Beispiele für Wahrscheinlichkeitsräume.- 2.1 Laplace-Experimente.- 2.2 Diskrete Zufallsexperimente.- 2.3 Riemannsche Dichten.- 2.4 Allgemeine Wahrscheinlichkeitsdichten.- 2.5 Zufallsgrößen; induzierte Wahrscheinlichkeitsverteilungen.- 2.6 Aufgaben.- §3 Kenngrößen von Wahrscheinlichkeitsverteilungen über (IRn, IBn).- 3.1 Eindimensionale Verteilungsfunktionen.- 3.2 Anwendungen bei induzierten Wahrscheinlichkeitsverteilungen.- 3.3 Erwartungswerte; schwaches Gesetz der großen Zahlen.- 3.4 Mehrdimensionale Verteilungsfunktionen.- 3.5 Momente von Zufalls Vektoren.- 3.6 Aufgaben.- §4 Gekoppelte Experimente; stochastische Unabhängigkeit.- 4.1 Produkte von meßbaren Räumen.- 4.2 Koppelung von Zufallsexperimenten; Satz von Kolmogoroff.- 4.3 Stochastisch unabhängige Ereignisse; 0-1-Gesetze.- 4.4 Stochastisch unabhängige Zufallsgrößen.- 4.5 Bedingte Wahrscheinlichkeiten, bedingte Erwartungswerte.- 4.6 Bedingte Verteilungen.- 4.7 Aufgaben.- §5 Starke Gesetze der großen Zahlen.- 5.1 Konvergenz nach Wahrscheinlichkeit und fast sichere Konvergenz.- 5.2 Die Ungleichung von Kolmogoroff und der Dreireihensatz.- 5.3 Die Kolmogoroffschen Gesetze der großen Zahlen.- 5.4 Der Satz von Glivenko-Cantelli.- 5.5 Aufgaben.- §6 Summenverteilungen; charakteristische Funktionen.- 6.1 Summen von stochastisch unabhängigen Zufallsgrößen; Faltungen.- 6.2 Charakteristische Funktionen.- 6.3 Bemerkungen zur Anwendung charakteristischer Funktionen.- 6.4 Aufgaben.- §7 Verteilungskonvergenz über (IRk,IBk); zentraler Grenzwertsatz.- 7.1 Verteilungskonvergenz über (IRk,IBk).- 7.2 Der Stetigkeitssatz für charakteristische Funktionen.- 7.3 DerGrenzwertsatz von Lindeberg/Levy.- 7.4 Der zentrale Grenzwertsatz.- 7.5 Aufgaben.- §8 Weitere Konvergenzsätze für unabhängige Zufallsgrößen.- 8.1 Konvergenzsätze für Zufallssummen.- 8.2 Der Satz vom iterierten Logarithmus.- 8.3 Extremwertverteilungen.- 8.4 Aufgaben.- §9 Allgemeine stochastische Prozesse; der Poisson- und der Wiener-Prozeß.- 9.1 Stochastische Prozesse.- 9.2 Der Poisson-Prozeß.- 9.3 Der Wiener-Prozeß.- 9.4 Aufgaben.- §10 Analytische Eigenschaften von stochastischen Prozessen.- 10.1 Stetigkeit von stochastischen Prozessen.- 10.2 Separabilität von stochastischen Prozessen.- 10.3 Eigenschaften der Pfade von separablen Poisson-Prozessen, Zwischenankunftszeiten.- 10.4 Bemerkungen zum Pfad-Verhalten von separablen Wiener-Prozessen.- 10.5 Aufgaben.- §11 Martingale.- 11.1 Adaptierende Familien von ?-Algebren.- 11.2 Martingale.- 11.3 Stopregeln.- 11.4 Gestoppte Martingale.- 11.5 Konvergenz von Martingalen.- 11.6 Aufgaben.- Anhang: Maßtheoretische Hilfsmittel.- A.1 Indikatorfunktionen, Limiten von Mengenfolgen.- A.2 Mengenalgebren.- A.3 ?-Algebren.- A.4 Inhalte und Maße.- A.5 Maßfortsetzung.- A.6 Meßbare Abbildungen.- A.7 Numerische Funktionen.- A.8 Maß-Integrale.- A.9 Vertauschungssätze für Maß-Integrale.- A.10 Produkträume.- A.U Marginalmaße, Produktmaße.- A.12 Der Satz von Radon-Nikodym.- A.13 Integralungleichungen.- Hinweise auf deutschsprachige Lehrbücher.
Textul de pe ultima copertă
In diesem Lehrbuch, das insbesondere zur Vorlesungsbegleitung und für das Selbststudium gedacht ist, nehmen die Motivation der Begriffsbildungen, die Erläuterungen und Interpretationen der Ausagen sowie die Illustration durch Beispiele einen breiten Raum ein. Nach einer ausführlichen Darstellung der Modellbildung werden Grenzwertaussagen für unabhängige Zufallsgrößen bewiesen, insbesondere Gesetze der großen Zahlen, der zentrale Grenzwertsatz und Konvergenzen gegen Extremwertverteilungen. - Anschließend werden zufallsabhängige zeitliche Entwicklungen (stoachastische Prozesse) untersucht. Insbesondere werden Poisson- und Wiener-Prozesse behandelt und Martingale untersucht. 160 Übungsaufgaben ergänzen den Text.