Cantitate/Preț
Produs

A Theory of Objects: Monographs in Computer Science

Autor Martin Abadi, Luca Cardelli
en Limba Engleză Paperback – 5 sep 2012
Procedural languages are generally well understood and their formal foundations cast in the forms of various lambda-calculi. For object- oriented languages however the situation is not as clear-cut. In this book the authors propose and develop a different approach by developing object calculi in which objects are treated as primitives. Using object calculi,the authors are able to explain both the semantics of objects and their typing rules and demonstrate how to develop all of the most important concepts of object-oriented programming languages: self, dynamic dispatch, classes, inheritance, protected and private methods, prototyping, subtyping, covariance and contravariance, and method specialization. Many researchers and graduate students will find this an important development of the underpinnings of object-oriented programming.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 142386 lei  6-8 săpt.
  Springer – 5 sep 2012 142386 lei  6-8 săpt.
Hardback (1) 142840 lei  6-8 săpt.
  Springer – 9 aug 1996 142840 lei  6-8 săpt.

Din seria Monographs in Computer Science

Preț: 142386 lei

Preț vechi: 177982 lei
-20% Nou

Puncte Express: 2136

Preț estimativ în valută:
27250 28458$ 22593£

Carte tipărită la comandă

Livrare economică 11-25 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461264453
ISBN-10: 1461264456
Pagini: 416
Ilustrații: XIII, 396 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Colecția Springer
Seria Monographs in Computer Science

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Prologue.- Review: Object-Oriented Features.- 1 Object Orientation.- 2 Class-Based Languages.- 3 Advanced Class-Based Features.- 4 Object-Based Languages.- 5 Modeling Object-Oriented Languages.- I: Untyped and First-Order Calculi.- 6 Untyped Calculi.- 7 First-Order Calculi.- 8 Subtyping.- 9 Recursion.- 10 Untyped Imperative Calculi.- 11 First-Order Imperative Calculi.- 12 A First-Order Language.- II: Second-Order Calculi.- 13 Second-Order Calculi.- 14 A Semantics.- 15 Definable Covariant Self Types.- 16 Primitive Covariant Self Types.- 17 Imperative Calculi with Self Types.- 18 Interpretations of Object Calculi.- 19 A Second-Order Language.- III: Higher-Order Calculi.- 20 A Higher-Order Calculus.- 21 A Language with Matching.- Epilogue.- APPENDIX: Rules and Proofs.- A Fragments.- A.1 Simple-Objects Fragments.- A.2 Other Typing Fragments.- A.3 Other Equational Fragments.- B Systems.- C Proofs.- C.1 Proof of the Variance Lemma from Section 13.3.- C.2 Proof of the Variance Lemma from Section 16.4.- C.3 Deriving the Rules for ?-Objects from Section 15.1.2.- C.4 Denotational Soundness of Equational Rules.- List of Figures.- List of Tables.- List of Notations.- List of Languages.