Advances in K-means Clustering: A Data Mining Thinking: Springer Theses
Autor Junjie Wuen Limba Engleză Paperback – 9 aug 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 640.51 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 9 aug 2014 | 640.51 lei 6-8 săpt. | |
Hardback (1) | 646.80 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 10 iul 2012 | 646.80 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1154.07 lei
- Preț: 389.88 lei
- 15% Preț: 646.94 lei
- 18% Preț: 1220.45 lei
- Preț: 399.29 lei
- 18% Preț: 997.88 lei
- 18% Preț: 941.05 lei
- Preț: 544.53 lei
- 15% Preț: 643.16 lei
- 15% Preț: 642.68 lei
- 15% Preț: 639.25 lei
- 20% Preț: 558.82 lei
- 18% Preț: 943.43 lei
- 18% Preț: 1116.26 lei
- 15% Preț: 640.06 lei
- 15% Preț: 640.06 lei
- Preț: 276.68 lei
- 15% Preț: 636.45 lei
- 18% Preț: 891.17 lei
- 15% Preț: 640.88 lei
- Preț: 389.70 lei
- 20% Preț: 563.89 lei
- Preț: 393.35 lei
- 15% Preț: 637.93 lei
- 15% Preț: 641.85 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1103.62 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1225.94 lei
- 18% Preț: 944.99 lei
- 18% Preț: 944.19 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1229.10 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1217.27 lei
- 15% Preț: 636.80 lei
- 18% Preț: 1000.87 lei
- 15% Preț: 635.96 lei
- 15% Preț: 640.88 lei
- Preț: 387.20 lei
- 18% Preț: 999.45 lei
- Preț: 385.25 lei
- Preț: 385.25 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1110.72 lei
- Preț: 386.99 lei
- 15% Preț: 637.13 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 640.51 lei
Preț vechi: 800.64 lei
-20% Nou
Puncte Express: 961
Preț estimativ în valută:
122.59€ • 126.34$ • 103.50£
122.59€ • 126.34$ • 103.50£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642447570
ISBN-10: 3642447570
Pagini: 196
Ilustrații: XVI, 180 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.28 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Theses
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642447570
Pagini: 196
Ilustrații: XVI, 180 p.
Dimensiuni: 155 x 235 x 10 mm
Greutate: 0.28 kg
Ediția:2012
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Theses
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Cluster Analysis and K-means Clustering: An Introduction.- The Uniform Effect of K-means Clustering.- Generalizing Distance Functions for Fuzzy c-Means Clustering.- Information-Theoretic K-means for Text Clustering.- Selecting External Validation Measures for K-means Clustering.- K-means Based Local Decomposition for Rare Class Analysis.- K-means Based Consensus Clustering.
Textul de pe ultima copertă
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Caracteristici
Gives an overall picture on how to adapt K-means to the clustering of newly emerging big data Establishes a theoretical framework for K-means clustering and cluster validity Studies the dangerous uniform effect and zero-value dilemma of K-means Demonstrates the novel use of K-means for rare class analysis and consensus clustering Based on the thesis that won the 2010 National Excellent Doctoral Dissertation Award of China Includes supplementary material: sn.pub/extras