Cantitate/Preț
Produs

Advances in the Theory of Shock Waves: Progress in Nonlinear Differential Equations and Their Applications, cartea 47

Editat de Heinrich Freistühler Contribuţii de T.-P. Liu Editat de Anders Szepessy Contribuţii de G. Metivier, J. Smoller, B. Temple, W.-A. Yong, K. Zumbrun
en Limba Engleză Hardback – 26 iun 2001
In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein­ Euler equations of general relativity; indeed, the mathematical and physical con­ sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap­ proach had for a long time seemed out of reach. The stability problem for "in­ viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi­ group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop­ erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64101 lei  6-8 săpt.
  Birkhäuser Boston – 24 oct 2012 64101 lei  6-8 săpt.
Hardback (1) 64746 lei  6-8 săpt.
  Birkhäuser Boston – 26 iun 2001 64746 lei  6-8 săpt.

Din seria Progress in Nonlinear Differential Equations and Their Applications

Preț: 64746 lei

Preț vechi: 76172 lei
-15% Nou

Puncte Express: 971

Preț estimativ în valută:
12397 12909$ 10286£

Carte tipărită la comandă

Livrare economică 13-27 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817641870
ISBN-10: 0817641874
Pagini: 520
Ilustrații: VIII, 520 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.92 kg
Ediția:2001
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

I. Well-Posedness Theory for Hyperbolic Systemsof Conservation Laws.- 1. Scalar conservation law.- 2. Glimm scheme.- 3. Wave tracing.- 4. Nonlinear functional.- II. Stability of Multidimensional Shocks.- 1. The uniform stability condition.- 2. The uniform stability estimates.- 3. Well posedness of the linearized shock front equations.- 4. The existence of multidimensional shocks.- 5. Stability of weak shocks.- III. Shock Wave Solutions of the Einstein Equations:A General Theory with Examples.- 1. Introduction.- 2. Solutions of the Einstein equations when the metricis only Lipschitz continuous across an interface.- 3. Matching an FRW to a TOV metric across a shock wave.- 4. A class of exact shock wave solutions of the Einstein equations — blast waves in GR.- 5. Cosmology with a shock wave.- 6. General comments on FRW–CTOV shock waves.- 7. The Oppenheimer–CSnyder limit and the solution for k = 0.- IV. Basic Aspects of Hyperbolic Relaxation Systems.- 1. Introduction.- 2. Relaxation criterion.- 3. The Chapman–CEnskog expansion.- 4. Admissible boundary conditions.- 5. Stability conditions.- 6. Typical examples.- 7. Moment closure systems.- 8. Discrete velocity kinetic models.- 9. Relaxation limits for smooth solutions.- 10. Shock structure problems.- V. Multidimensional Stability of Planar Viscous Shock Waves.- 1. Introduction.- 2. The Evans function and its low frequency limit.- 3. Necessary conditions for stability.- 4. Sufficient conditions for stability.- 5. Pointwise bounds for scalar equations.- 6. One-dimensional stability: the stability index.- 7. Discussion and open problems.- 8. Appendices: extensions and auxiliary calculations.