Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type: Mathematics and Its Applications, cartea 402
Autor Yuri A. Mitropolsky, G. Khoma, M. Gromyaken Limba Engleză Hardback – 30 apr 1997
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 384.31 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 13 oct 2012 | 384.31 lei 6-8 săpt. | |
Hardback (1) | 391.61 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 30 apr 1997 | 391.61 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- 18% Preț: 945.62 lei
- 15% Preț: 648.42 lei
- 15% Preț: 651.99 lei
- 15% Preț: 591.61 lei
- Preț: 394.29 lei
- 18% Preț: 955.56 lei
- 15% Preț: 586.85 lei
- 5% Preț: 655.17 lei
- 15% Preț: 658.70 lei
- 15% Preț: 648.56 lei
- 15% Preț: 604.84 lei
- Preț: 394.87 lei
- 15% Preț: 651.84 lei
- Preț: 374.76 lei
- Preț: 394.51 lei
- 15% Preț: 706.30 lei
- Preț: 391.02 lei
- Preț: 389.70 lei
- 15% Preț: 585.04 lei
- 15% Preț: 653.98 lei
- 15% Preț: 587.02 lei
- 20% Preț: 577.42 lei
- Preț: 395.47 lei
- 15% Preț: 601.88 lei
- 15% Preț: 594.53 lei
- 15% Preț: 651.84 lei
- 15% Preț: 649.06 lei
- Preț: 392.21 lei
- 15% Preț: 649.06 lei
- 15% Preț: 643.48 lei
- Preț: 398.15 lei
Preț: 391.61 lei
Nou
Puncte Express: 587
Preț estimativ în valută:
74.94€ • 78.14$ • 62.28£
74.94€ • 78.14$ • 62.28£
Carte tipărită la comandă
Livrare economică 20 martie-03 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792345299
ISBN-10: 0792345290
Pagini: 214
Ilustrații: X, 214 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.5 kg
Ediția:1997
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792345290
Pagini: 214
Ilustrații: X, 214 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.5 kg
Ediția:1997
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1 Existence Theorems for Hyperbolic Equations.- 1.1 Preliminary remarks.- 1.2 Homogeneous mixed problem.- 1.3 Nonhomogeneous mixed problem.- 1.4 Reduction of the second order quasiwave equation to the first order systems.- 1.5 Reduction of the quasiwave equation to a system of integral equations.- 1.6 Quasilinear mixed problem.- 1.7 A property of solutions of quasilinear mixed problem.- 1.8 Justification of the asymptotic methods to be applied to the investigation of quasilinear mixed problems.- 1.9 A periodic boundary value problem.- 2 Periodic Solutions of The Wave Ordinary Diferential Equations of Second Order.- 2.1 Preliminary remarks.- 2.2 The existence of solutions periodic in time for wave equations.- 2.3 Periodic solutions of autonomous wave differential equations.- 3 Periodic Solutions of The First Class Systems.- 3.1 Linear systems.- 3.2 Nonlinear systems.- 4 Periodic Solutions of The Second Class Systems.- 4.1 Some preliminaries.- 4.2 The structure of generalized periodic solutions of the second order wave equation of the first kind.- 4.3 The structure of generalized periodic solutions of the second order wave equation of the second kind.- 4.4 The structure of continuous periodic solutions of systems.- 5 Periodic Solutions of The Second Order Integro-Diffrential Equations of Hyperbolic Type.- 5.1 Some preliminaries.- 5.2 Classical and smooth periodic solutions.- 5.3 The existence of generalized periodic solutions of hyperbolic integro-differential equations.- 5.4 Periodic solutions of nonlinear wave equations with small parameter.- 6 Hyperbolic Systems with Fast and Slow Variables and Asymptotic Methods For Solving Them.- 6.1 The first approximation of asymptotic solutions of the second order equations.- 6.2 Analytical dependence of solutions of hyperbolic equations on parameter.- 6.3 Bounded solutions of a linear hyperbolic system of first order.- 6.4 Almost periodic solutions of an almost linear hyperbolic system of first order.- 6.5 Mathematical justification of the Bogolyubov averaging method over the infinite time interval for hyperbolic systems of first order.- 6.6 The averaging methods for hyperbolic systems with fast and slow variables.- 6.7 Reduction of quasilinear equations to a countable system.- 6.8 Truncation of a countable system of partial differential equations. Problems of mathematical justification.- 6.9 Investigation into the multifrequency oscillation modes of the quasiwave equation.- 6.10 Asymptotic solution of nonlinear systems of first order partial differential equations.- 7 Asymptotic Methods For The Second Order Partial Differential Equations of Hyperbolic Type.- 7.1 The reduction of quasilinear equations of hyperbolic type to a countable system of ordinary differential equations in standard form.- 7.2 The reduction method in application to a countable system of differential equations.- 7.3 Summation of trigonometric Fourier series with coefficients given approximately.- 7.4 Shortening countable systems.- 7.5 Determination of the approximate solutions of truncated systems.- 7.6 Reduction of the nonlinear equations of hyperbolic type to countable systems.- 7.7 Investigation of solutions of the equation describing string transverse vibrations in a medium whose resistance is proportional to the velocity in first degree.- 7.8 A remark on shortening countable systems obtained when solving nonlinear hyperbolic equations.- 7.9 Construction of asymptotic approximations to solutions of linear mixed problems appearing when investigating multi-frequency modes of oscillations.- 7.10 Investigation of single-frequency oscillations for the equation utt-a2uxx = eu2.- 7.11 Construction of asymptotic approximations to solutions of nonlinear mixed problems used for investigating single-frequency modes of oscillations with fast and slow variables.- 7.12 A method for constructing asymptotic approximations to solutions of partial differential equations with application to multi-frequency modes of oscillations.