Cantitate/Preț
Produs

Campi Euclidei

Autor Antonino Leonardis
it Limba Italiană Paperback – 10 sep 2014
Il ben noto algoritmo di Euclide permette facilmente di trovare il massimo comun divisore di due numeri interi. Un anello nel quale sia presente un simile procedimento di divisione con resto (in cui il resto sia in un certo senso "piu piccolo" del divisore) viene chiamato dominio euclideo. Usando l'algoritmo di Euclide si dimostra che gli ideali di tale anello sono tutti principali, ovvero esso e anche un dominio a ideali principali (mentre non e vero l'opposto). Questo libro affronta tale problematica nel caso degli anelli degli interi di un campo globale (ovvero un'estensione finita del campo dei numeri razionali oppure il campo delle frazioni polinomiali a coefficienti in un campo finito): quando un tale anello e un dominio a ideali principali, e in particolare euclideo? Il libro e dunque indicato per chi studia l'algebra astratta e in particolare i campi di numeri algebrici; inoltre, per chi ne fosse incuriosito, tra le conseguenze della famosa congettura di Riemann (generalizzata), che nel caso dei campi di funzioni e stata dimostrata, vi e riportato in questo libro un risultato sorprendente, cioe che quasi tutti i domini a ideali principali di questo tipo sono anche euclidei"
Citește tot Restrânge

Preț: 22052 lei

Nou

Puncte Express: 331

Preț estimativ în valută:
4221 4599$ 3541£

Carte tipărită la comandă

Livrare economică 18 decembrie 24 - 01 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783639656282
ISBN-10: 3639656288
Pagini: 56
Dimensiuni: 152 x 229 x 3 mm
Greutate: 0.1 kg
Ediția:
Editura: Edizioni Accademiche Italiane

Notă biografică

L'autore, nato a Vizzolo Predabissi (MI) il 20/6/85, dimostra una precoce passione per la matematica. Partecipa con successo alle Olimpiadi della Matematica e ai Campionati Internazionali di Giochi Matematici. Studia dal 2003 presso la SNS di Pisa, dove sta per conseguire il diploma di Perfezionamento (PhD). Nel tempo libero gioca a Bridge.