Cantitate/Preț
Produs

Characterizing Groundwater Flow Dynamics and Storage Capacity in an Active Rock Glacier: BestMasters

Autor Simon Seelig
en Limba Engleză Paperback – 8 mar 2022
Alpine aquifers play a critical role in the hydrology of mountainous areas by sustaining base flow in downstream rivers during dry periods and retarding flood propagation after heavy precipitation events. Progressing climate change alters climatic and meteorological boundary conditions as well as the hydraulic response of alpine catchments by ablating glaciers and thawing permafrost. Rock glaciers exert a controlling influence on the catchment response due to their prominent groundwater storage and complex drainage characteristics. This thesis investigates the hydrogeology and internal structure of the active rock glacier Innere Ölgrube (Ötztal Alps), which governs catchment runoff and is affected by permafrost degradation. A 3D geometrical model of its internal structure is obtained by combining geophysical data and permafrost creep modelling. Available data and new results are integrated into a conceptual hydrogeological model providing a sound basis for the implementation of a prospective numerical groundwater flow model. Hydraulic properties of the hydrostratigraphic units constituting the rock glacier are estimated and groundwater recharge fluxes quantified. Fundamental properties of the heterogeneous groundwater flow system within the rock glacier are discussed and compared to existing rock glacier studies.

Citește tot Restrânge

Din seria BestMasters

Preț: 44020 lei

Preț vechi: 51788 lei
-15% Nou

Puncte Express: 660

Preț estimativ în valută:
8427 9180$ 7069£

Carte tipărită la comandă

Livrare economică 18 decembrie 24 - 01 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783658370725
ISBN-10: 3658370726
Pagini: 158
Ilustrații: XVII, 158 p. 56 illus.
Dimensiuni: 148 x 210 mm
Greutate: 0.24 kg
Ediția:1st ed. 2022
Editura: Springer Fachmedien Wiesbaden
Colecția Springer Spektrum
Seria BestMasters

Locul publicării:Wiesbaden, Germany

Cuprins

Introduction.- Study site.- Methods.- Results and interpretation.- Discussion.- Conclusion.- Outlook.

Notă biografică

About the author
Simon Seelig is currently working on alpine water resources and climate change as PhD student at the University of Graz, Austria. His educational background is geosciences, focusing on hydrogeology and engineering geology at the Universities of Graz, Leoben, and Waterloo (ON).

Textul de pe ultima copertă

Alpine aquifers play a critical role in the hydrology of mountainous areas by sustaining base flow in downstream rivers during dry periods and retarding flood propagation after heavy precipitation events. Progressing climate change alters climatic and meteorological boundary conditions as well as the hydraulic response of alpine catchments by ablating glaciers and thawing permafrost. Rock glaciers exert a controlling influence on the catchment response due to their prominent groundwater storage and complex drainage characteristics. This thesis investigates the hydrogeology and internal structure of the active rock glacier Innere Ölgrube (Ötztal Alps), which governs catchment runoff and is affected by permafrost degradation. A 3D geometrical model of its internal structure is obtained by combining geophysical data and permafrost creep modelling. Available data and new results are integrated into a conceptual hydrogeological model providing a sound basis for the implementation of a prospective numerical groundwater flow model. Hydraulic properties of the hydrostratigraphic units constituting the rock glacier are estimated and groundwater recharge fluxes quantified. Fundamental properties of the heterogeneous groundwater flow system within the rock glacier are discussed and compared to existing rock glacier studies.About the author
Simon Seelig is currently working on alpine water resources and climate change as PhD student at the University of Graz, Austria. His educational background is geosciences, focusing on hydrogeology and engineering geology at the Universities of Graz, Leoben, and Waterloo (ON).