Cantitate/Preț
Produs

Cohomology of Groups: Graduate Texts in Mathematics, cartea 87

Autor Kenneth S. Brown
en Limba Engleză Hardback – oct 1982
As a second year graduate textbook, Cohomology of Groups introduces students to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 40355 lei  38-44 zile
  Springer – 28 apr 2012 40355 lei  38-44 zile
Hardback (1) 52435 lei  6-8 săpt.
  Springer – oct 1982 52435 lei  6-8 săpt.

Din seria Graduate Texts in Mathematics

Preț: 52435 lei

Preț vechi: 61689 lei
-15% Nou

Puncte Express: 787

Preț estimativ în valută:
10038 10434$ 8323£

Carte tipărită la comandă

Livrare economică 05-19 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387906881
ISBN-10: 0387906886
Pagini: 306
Ilustrații: X, 309 p. With 1st ed. 1982..
Greutate: 0.63 kg
Ediția:1982
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

I Some Homological Algebra.- 0. Review of Chain Complexes.- 1. Free Resolutions.- 2. Group Rings.- 3. G-Modules.- 4. Resolutions of Z Over ZG via Topology.- 5. The Standard Resolution.- 6. Periodic Resolutions via Free Actions on Spheres.- 7. Uniqueness of Resolutions.- 8. Projective Modules.- Appendix. Review of Regular Coverings.- II The Homology of a Group.- 1. Generalities.- 2. Co-invariants.- 3. The Definition of H*G.- 4. Topological Interpretation.- 5. Hopfs Theorems.- 6. Functoriality.- 7. The Homology of Amalgamated Free Products.- Appendix. Trees and Amalgamations.- III Homology and Cohomology with Coefficients.- 0. Preliminaries on ?G and HomG.- 1. Definition of H*(G, M) and H*(G, M).- 2. Tor and Ext.- 3. Extension and Co-extension of Scalars.- 4. Injective Modules.- 5. Induced and Co-induced Modules.- 6. H* and H* as Functors of the Coefficient Module.- 7. Dimension Shifting.- 8. H* and H* as Functors of Two Variables.- 9. The Transfer Map.- 10. Applications of the Transfer.- IV Low Dimensional Cohomology and Group Extensions.- 1. Introduction.- 2. Split Extensions.- 3. The Classification of Extensions with Abelian Kernel.- 4. Application: p-Groups with a Cyclic Subgroup of Index p.- 5. Crossed Modules and H3 (Sketch).- 6. Extensions With Non-Abelian Kernel (Sketch).- V Products.- 1. The Tensor Product of Resolutions.- 2. Cross-products.- 3. Cup and Cap Products.- 4. Composition Products.- 5. The Pontryagin Product.- 6. Application: Calculation of the Homology of an Abelian Group.- VI Cohomology Theory of Finite Groups.- 1. Introduction.- 2. Relative Homological Algebra.- 3. Complete Resolutions.- 4. Definition of ?*.- 5. Properties of ?*.- 6. Composition Products.- 7. A Duality Theorem.- 8. Cohomologically Trivial Modules.- 9. Groups with Periodic Cohomology.- VII Equivariant Homology and Spectral Sequences.- 1. Introduction.- 2. The Spectral Sequence of a Filtered Complex.- 3. Double Complexes.- 4. Example: The Homology of a Union.- 5. Homology of a Group with Coefficients in a Chain Complex.- 6. Example: The Hochschild-Serre Spectral Sequence.- 7. Equivariant Homology.- 8. Computation of d1.- 9. Example: Amalgamations.- 10. Equivariant Tate CohoMology.- VIII Finiteness Conditions.- 1. Introduction.- 2. CohoMological Dimension.- 3. Serre’s Theorem.- 4. Resolutions of Finite Type.- 5. Groups of Type FPn.- 6. Groups of Type FF and FL.- 7. Topological Interpretation.- 8. Further Topological Results.- 9. Further Examples.- 10. Duality Groups.- 11. Virtual Notions.- IX Euler Characteristics.- 1. Ranks of Projective Modules: Introduction.- 2. The Hattori-Stallings Rank.- 3. Ranks Over Commutative Rings.- 4. Ranks Over Group Rings; Swan’s Theorem.- 5. Consequences of Swan’s Theorem.- 6. Euler Characteristics of Groups: The Torsion-Free Case.- 7. Extension to Groups with Torsion.- 8. Euler Characteristics and Number Theory.- 9. Integrality Properties of ?(?).- 10. Proof of Theorem 9.3; Finite Group Actions.- 11. The Fractional Part of ?(?).-12. Acyclic Covers; Proof of Lemma 11.2.- 13. The p-Fractional Part of ?(?).- 14. A Formula for ??(A).- X Farrell Cohomology Theory.- 1. Introduction.- 2. Complete Resolutions.- 3. Definition and Properties of ?*(?)277.- 4. Equivariant Farrell Cohomology.- 5. Cohomologically Trivial Modules.- 6. Groups with Periodic Cohomology.- 7. ?*(?) and the Ordered Set of Finite Subgroups of ?.- References.- Notation Index.

Descriere

Descriere de la o altă ediție sau format:
As a second year graduate textbook,Cohomology of Groupsintroduces students to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology. The basics of the subject are given (along with exercises) before the author discusses more specialized topics.