Deep Learning Architectures: A Mathematical Approach: Springer Series in the Data Sciences
Autor Ovidiu Calinen Limba Engleză Hardback – 14 feb 2020
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 448.75 lei 6-8 săpt. | |
Springer International Publishing – 14 feb 2021 | 448.75 lei 6-8 săpt. | |
Hardback (1) | 550.11 lei 3-5 săpt. | +72.94 lei 4-10 zile |
Springer International Publishing – 14 feb 2020 | 550.11 lei 3-5 săpt. | +72.94 lei 4-10 zile |
Preț: 550.11 lei
Preț vechi: 687.63 lei
-20% Nou
105.28€ • 109.68$ • 87.53£
Carte disponibilă
Livrare economică 20 ianuarie-03 februarie 25
Livrare express 03-09 ianuarie 25 pentru 82.93 lei
Specificații
ISBN-10: 3030367207
Pagini: 760
Ilustrații: XXX, 760 p. 207 illus., 35 illus. in color.
Dimensiuni: 178 x 254 x 45 mm
Greutate: 1.84 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Springer Series in the Data Sciences
Locul publicării:Cham, Switzerland
Cuprins
Introductory Problems.- Activation Functions.- Cost Functions.- Finding Minima Algorithms.- Abstract Neurons.- Neural Networks.- Approximation Theorems.- Learning with One-dimensional Inputs.- Universal Approximators.- Exact Learning.- Information Representation.- Information Capacity Assessment.- Output Manifolds.- Neuromanifolds.- Pooling.- Convolutional Networks.- Recurrent Neural Networks.- Classification.- Generative Models.- Stochastic Networks.- Hints and Solutions.
Recenzii
Notă biografică
Ovidiu Calin, a graduate from University of Toronto, is a professor at Eastern Michigan University and a former visiting professor at Princeton University and University of Notre Dame. He has delivered numerous lectures at several universities in Japan, Hong Kong, Taiwan, and Kuwait over the last 15 years. His publications include over 60 articles and 8 books in the fields of machine learning, computational finance, stochastic processes, variational calculus and geometric analysis.
Textul de pe ultima copertă
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Caracteristici
Full solutions provided to all exercises
Appendices including topics needed in the book exposition
Descriere
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.