Degenerate Parabolic Equations: Universitext
Autor Emmanuele DiBenedettoen Limba Engleză Paperback – 23 iul 1993
Din seria Universitext
- 13% Preț: 353.48 lei
- Preț: 418.67 lei
- Preț: 465.61 lei
- Preț: 371.98 lei
- 17% Preț: 394.41 lei
- Preț: 356.77 lei
- 17% Preț: 364.56 lei
- 15% Preț: 543.75 lei
- 15% Preț: 497.21 lei
- Preț: 634.38 lei
- Preț: 396.53 lei
- 17% Preț: 431.50 lei
- 13% Preț: 355.51 lei
- Preț: 360.07 lei
- 17% Preț: 365.34 lei
- Preț: 358.44 lei
- 15% Preț: 553.33 lei
- 17% Preț: 364.81 lei
- Preț: 673.45 lei
- 15% Preț: 509.58 lei
- 17% Preț: 427.32 lei
- 17% Preț: 426.76 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- 19% Preț: 429.21 lei
- 17% Preț: 368.14 lei
- 15% Preț: 737.46 lei
- 13% Preț: 389.95 lei
- Preț: 487.96 lei
- 20% Preț: 628.22 lei
- Preț: 372.86 lei
- Preț: 319.07 lei
- Preț: 379.86 lei
- Preț: 445.88 lei
- Preț: 382.36 lei
- 15% Preț: 533.72 lei
- 15% Preț: 496.02 lei
- 15% Preț: 474.82 lei
- Preț: 389.70 lei
- Preț: 484.08 lei
- 15% Preț: 469.48 lei
- 15% Preț: 643.48 lei
- Preț: 415.02 lei
- 15% Preț: 602.25 lei
- 20% Preț: 510.24 lei
- 15% Preț: 588.37 lei
- Preț: 381.59 lei
- Preț: 489.87 lei
- Preț: 493.89 lei
Preț: 702.54 lei
Preț vechi: 826.53 lei
-15% Nou
Puncte Express: 1054
Preț estimativ în valută:
134.44€ • 139.51$ • 112.37£
134.44€ • 139.51$ • 112.37£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387940205
ISBN-10: 0387940200
Pagini: 388
Ilustrații: XVI, 388 p. 10 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
ISBN-10: 0387940200
Pagini: 388
Ilustrații: XVI, 388 p. 10 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.58 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer
Colecția Springer
Seria Universitext
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Notation and function spaces.- §1. Some notation.- §2. Basic facts aboutW1,p(?) andWo1,p(?).- §3. Parabolic spaces and embeddings.- §4. Auxiliary lemmas.- §5. Bibliographical notes.- II. Weak solutions and local energy estimates.- §1. Quasilinear degenerate or singular equations.- §2. Boundary value problems.- §3. Local integral inequalities.- §4. Energy estimates near the boundary.- §5. Restricted structures: the levelskand the constant ?.- §6. Bibliographical notes.- III. Hölder continuity of solutions of degenerate parabolic equations.- §1. The regularity theorem.- §2. Preliminaries.- §3. The main proposition.- §4. The first alternative.- §5. The first alternative continued.- §6. The first alternative concluded.- §7. The second alternative.- §8. The second alternative continued.- §9. The second alternative concluded.- §10. Proof of Proposition 3.1.- §11. Regularity up tot= 0.- §12. Regularity up toST. Dirichlet data.- §13. Regularity atST. Variational data.- §14. Remarks on stability.- §15. Bibliographical notes.- IV. Hölder continuity of solutions of singular parabolic equations.- §1. Singular equations and the regularity theorems.- §2. The main proposition.- §3. Preliminaries.- §4. Rescaled iterations.- §5. The first alternative.- §6. Proof of Lemma 5.1. Integral inequalities.- §7. An auxiliary proposition.- §8. Proof of Proposition 7.1 when (7.6) holds.- §9. Removing the assumption (6.1).- §10. The second alternative.- §11. The second alternative concluded.- §12. Proof of the main proposition.- §13. Boundary regularity.- §14. Miscellaneous remarks.- §15. Bibliographical notes.- V. Boundedness of weak solutions.- §1. Introduction.- §2. Quasilinear parabolic equations.- §3. Sup-bounds.- §4. Homogeneous structures. 2.- §5. Homogeneous structures. The singular case 1
max\left\{ {1;\frac{{2N}}{{N + 2}}} \right\}} \right)$$.- §9. Global iterative inequalities.- §10. Homogeneous structures and $$1 < p \leqslant max\left\{ {1;\frac{{2N}}{{N + 2}}} \right\}$$.- §11. Proof of Theorems 3.1 and 3.2.- §12. Proof of Theorem 4.1.- §13. Proof of Theorem 4.2.- §14. Proof of Theorem 4.3.- §15. Proof of Theorem 4.5.- §16. Proof of Theorems 5.1 and 5.2.- §17. Natural growth conditions.- §18. Bibliographical notes.- VI. Harnack estimates: the casep>2.- §1. Introduction.- §2. The intrinsic Harnack inequality.- §3. Local comparison functions.- §4. Proof of Theorem 2.1.- §5. Proof of Theorem 2.2.- §6. Global versus local estimates.- §7. Global Harnack estimates.- §8. Compactly supported initial data.- §9. Proof of Proposition 8.1.- §10. Proof of Proposition 8.1 continued.- §11. Proof of Proposition 8.1 concluded.- §12. The Cauchy problem with compactly supported initial data.- §13. Bibliographical notes.- VII. Harnack estimates and extinction profile for singular equations.- §1. The Harnack inequality.- §2. Extinction in finite time (bounded domains).- §3. Extinction in finite time (in RN).- §4. An integral Harnack inequality for all 1 2).- §4. Hölder continuity ofDu (the case 1
2).- §5. Estimating the local average of |Dw| (the casep> 2).- §6. Estimating the local averages of w (the casep> 2).- §7. Comparing w and y (the case max $$\left\{ {1;\tfrac{{2N}}{{N + 2}}} \right\} < p< 2$$).- §8. Estimating the local average of |Dw|.- §9. Bibliographical notes.- XI. Non-negative solutions in ?T. The casep>2.- §1. Introduction.- §2. Behaviour of non-negative solutions as |x| ? ? and as t ? 0.- §3. Proof of (2.4).- §4. Initial traces.- §5. Estimating |Du|p?1 in ?T.- §6. Uniqueness for data inLloc1(RN).- §7. Solving the Cauchy problem.- §8. Bibliographical notes.- XII. Non-negative solutions in ?T. The case 1 The uniqueness theorem.- §6. An auxiliary proposition.- §7. Proof of the uniqueness theorem.- §8. Solving the Cauchy problem.- §9. Compactness in the space variables.- §10. Compactness in thetvariable.- §11. More on the time—compactness.- §12. The limiting process.- §13. Bounded solutions. A counterexample.- §14. Bibliographical notes.
2).- §5. Estimating the local average of |Dw| (the casep> 2).- §6. Estimating the local averages of w (the casep> 2).- §7. Comparing w and y (the case max $$\left\{ {1;\tfrac{{2N}}{{N + 2}}} \right\} < p< 2$$).- §8. Estimating the local average of |Dw|.- §9. Bibliographical notes.- XI. Non-negative solutions in ?T. The casep>2.- §1. Introduction.- §2. Behaviour of non-negative solutions as |x| ? ? and as t ? 0.- §3. Proof of (2.4).- §4. Initial traces.- §5. Estimating |Du|p?1 in ?T.- §6. Uniqueness for data inLloc1(RN).- §7. Solving the Cauchy problem.- §8. Bibliographical notes.- XII. Non-negative solutions in ?T. The case 1 The uniqueness theorem.- §6. An auxiliary proposition.- §7. Proof of the uniqueness theorem.- §8. Solving the Cauchy problem.- §9. Compactness in the space variables.- §10. Compactness in thetvariable.- §11. More on the time—compactness.- §12. The limiting process.- §13. Bounded solutions. A counterexample.- §14. Bibliographical notes.