Dimensions of Ring Theory: Mathematics and Its Applications, cartea 36
Autor C. Nastasescu, Freddy Van Oystaeyenen Limba Engleză Hardback – 30 apr 1987
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 378.00 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 7 oct 2011 | 378.00 lei 6-8 săpt. | |
Hardback (1) | 385.22 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 30 apr 1987 | 385.22 lei 6-8 săpt. |
Din seria Mathematics and Its Applications
- Preț: 228.74 lei
- 18% Preț: 909.79 lei
- 15% Preț: 623.90 lei
- 15% Preț: 627.34 lei
- 15% Preț: 569.26 lei
- Preț: 379.47 lei
- 18% Preț: 919.36 lei
- 15% Preț: 564.69 lei
- 5% Preț: 630.42 lei
- 15% Preț: 633.79 lei
- 15% Preț: 624.05 lei
- 15% Preț: 581.99 lei
- Preț: 380.04 lei
- 15% Preț: 627.21 lei
- Preț: 374.76 lei
- Preț: 379.67 lei
- 15% Preț: 679.59 lei
- Preț: 376.33 lei
- Preț: 375.06 lei
- 15% Preț: 562.95 lei
- 15% Preț: 629.24 lei
- 15% Preț: 564.87 lei
- 20% Preț: 577.42 lei
- Preț: 380.61 lei
- 15% Preț: 579.15 lei
- 15% Preț: 572.06 lei
- 15% Preț: 627.21 lei
- 15% Preț: 624.53 lei
- Preț: 377.46 lei
- 15% Preț: 624.53 lei
- 15% Preț: 619.15 lei
- Preț: 374.86 lei
Preț: 385.22 lei
Nou
Puncte Express: 578
Preț estimativ în valută:
73.73€ • 77.52$ • 61.33£
73.73€ • 77.52$ • 61.33£
Carte tipărită la comandă
Livrare economică 27 decembrie 24 - 10 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789027724618
ISBN-10: 902772461X
Pagini: 360
Ilustrații: XI, 360 p.
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.7 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 902772461X
Pagini: 360
Ilustrații: XI, 360 p.
Dimensiuni: 156 x 234 x 22 mm
Greutate: 0.7 kg
Ediția:1987
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Finiteness Conditions for Lattices.- 1.1. Lattices.- 1.2. Noetherian and Artinian Lattices.- 1.3. Lattices of Finite Length.- 1.4. Irreducible Elements in a Lattice.- 1.5. Goldie Dimension of a Modular Lattice.- 1.6. Goldie Dimension and Chain Conditions for Modular Lattices with Finite Group Actions.- 1.7. Complements and Pseudo-Complements.- 1.8. Semiatomic Lattices and Compactly Generated Lattices.- 1.9. Semiartinian Lattices.- 1.10. Indecomposable Elements in a Lattice.- 1.11. Exercises.- Bibliographical Comments to Chapter 1.- 2. Finiteness Conditions for Modules.- 2.1. Modules.- 2.2. The Lattice of Submodules of a Module.- 2.3. Noetherian and Artinian Modules.- 2.4. Modules of Finite Length.- 2.5. Semisimple Modules.- 2.6. Semisimple and Simple Artinian Rings.- 2.7. The Jacobson Radical and the Prime Radical of a Ring.- 2.8. Rings of Fractions. Goldie’s Theorems.- 2.9. Artinian Modules which are Noetherian.- 2.10. Projective and Infective Modules.- 2.11. Tensor Product and Flat Modules.- 2.12. Normalizing Extensions of a Ring.- 2.13. Graded Rings and Modules.- 2.14. Graded Rings and Modules of Type ?. Internal Homogenisation.- 2.15. Noetherian Modules over Graded Rings of Type ?. Applications.- 2.16. Strongly Graded Rings and Clifford Systems for Finite Groups.- 2.17. Invariants of a Finite Group Action.- 2.18. Exercises.- Bibliographical Comments to Chapter 2.- 3. Krull Dimension and Gabriel Dimension of an Ordered Set.- 3.1. Definitions and Basic Properties.- 3.2. The Krull Dimension of a Modular Lattice.- 3.3. Critical Composition Series of a Lattice.- 3.4. The Gabriel Dimension of a Modular Lattice.- 3.5. Comparison of Krull and Gabriel Dimension.- 3.6. Exercises.- Bibliographical Comments to Chapter 3.- 4. Krull Dimension and Gabriel Dimension ofRings and Modules.- 4.1. Definitions and Generalities.- 4.2. Krull and Gabriel Dimension of Some Special Classes of Rings and Modules.- 4.3. Exercises.- Bibliographical Comments to Chapter 4.- 5. Rings with Krull Dimension.- 5.1. Nil Ideals.- 5.2. Semiprime Rings with Krull Dimension.- 5.3. Classical Krull Dimension of a Ring.- 5.4. Associated prime Ideals.- 5.5. Fully Left Bounded Rings with Krull Dimension.- 5.6. Examples of Noetherian Rings of Arbitrary Krull Dimension.- 5.7. Exercises.- Bibliographical Comments to Chapter 5.- 6. Krull Dimension of Noetherian Rings. The Principal Ideal Theorem.- 6.1. Fully Left Bounded Left Noetherian Rings.- 6.2. The Reduced Rank of a Module.- 6.3. Noetherian Rings Satisfying Condition H.- 6.4. Fully Bounded Noetherian Rings.- 6.5. Krull Dimension and Invertible Ideals in a Noetherian Ring.- 6.6. The Principal Ideal Theorem.- 6.7. Exercises.- Bibliographical Comments to Chapter 6.- 7. Relative Krull and Gabriel Dimensions.- 7.1. Additive Topologies and Torsion Theories.- 7.2. The Lattices CF(M) and CHg.- 7.3. Relative Krull Dimension.- 7.4. Relative Krull Dimension Applied to the Principal Ideal Theorem.- 7.5. Relative Gabriel Dimension.- 7.6. Relative Krull and Gabriel Dimensions of Graded Rings.- 7.7. Exercises.- Bibliographical Comments to Chapter 7.- 8. Homological Dimensions.- 8.1. The Projective Dimension of a Module.- 8.2. Homological Dimension of Polynomial Rings and Rings of Formal Power Series.- 8.3. Injective Dimension of a Module.- 8.4. The Flat Dimension of a Module.- 8.5. The Artin-Rees Property and Homological Dimensions.- 8.6. Regular Local Rings.- 8.7. Exercises.- Bibliographical Comments to Chapter 8.- 9. Rings of Finite Global Dimension.- 9.1. The Zariski Topology.- 9.2. The Local Study of Homological Dimension.- 9.3. Rings Integral over their Centres.- 9.4. Commutative Rings of Finite Global Dimension.- 9.5. Exercises.- Bibliographical Comments to Chapter 9.- 10. The Gelfand-Kirillov Dimension.- 10.1. Definitions and Basic Properties.- 10.2. GK-dimension of Filtered and Graded Algebras.- 10.3. Applications to Special Classes of Rings.- 10.4. Exercises.- Bibliographical Comments to Chapter 10.- References.