Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research: Springer Theses
Autor Chao Shangen Limba Engleză Paperback – 30 ian 2019
The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 621.18 lei 6-8 săpt. | |
Springer Nature Singapore – 30 ian 2019 | 621.18 lei 6-8 săpt. | |
Hardback (1) | 627.11 lei 6-8 săpt. | |
Springer Nature Singapore – 5 mar 2018 | 627.11 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.53 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.82 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.68 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.89 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 621.18 lei
Preț vechi: 730.80 lei
-15% Nou
Puncte Express: 932
Preț estimativ în valută:
118.92€ • 123.61$ • 98.60£
118.92€ • 123.61$ • 98.60£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811338892
ISBN-10: 9811338892
Ilustrații: XVIII, 143 p. 59 illus., 46 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.24 kg
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses
Locul publicării:Singapore, Singapore
ISBN-10: 9811338892
Ilustrații: XVIII, 143 p. 59 illus., 46 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.24 kg
Ediția:Softcover reprint of the original 1st ed. 2018
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses
Locul publicării:Singapore, Singapore
Cuprins
Introduction.- Concurrent monitoring of steady state and process dynamics with SFA.- Online monitoring and diagnosis of control performance with SFA and contribution plots.- Recursive SFA algorithm and adaptive monitoring system design.- Probabilistic SFR model and its applications in dynamic quality prediction.- Improved DPLS model with temporal smoothness and its applications in dynamic quality prediction.- Nonlinear and dynamic soft sensing model based on Bayesian framework.- Summary and open problems.
Textul de pe ultima copertă
This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts.
The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.
The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.
Caracteristici
Nominated as an outstanding PhD thesis by Tsinghua University Develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle Proposes an effective process monitoring strategy to eliminate false alarms in industrial production Presents a holistic framework for adaptive process monitoring system design Offers dynamic quality prediction models with improved data utilization and accuracy for product quality control