Cantitate/Preț
Produs

Ebene algebraische Kurven: vieweg studium; Aufbaukurs Mathematik, cartea 67

Autor Gerd Fischer
de Limba Germană Paperback – 1994

Din seria vieweg studium; Aufbaukurs Mathematik

Preț: 22790 lei

Nou

Puncte Express: 342

Preț estimativ în valută:
4361 4559$ 3685£

Carte tipărită la comandă

Livrare economică 03-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528072674
ISBN-10: 3528072679
Pagini: 192
Ilustrații: X, 177 S. Mit zahlr. Abb.
Dimensiuni: 162 x 229 x 10 mm
Ediția:1994
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria vieweg studium; Aufbaukurs Mathematik

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

0 Einführung.- 0.1 Geraden.- 0.2 Kreise.- 0.3 Neilsche Parabel.- 0.4 Newtonscher Knoten.- 0.5 Cartesisches Blatt.- 0.6 Zykloiden.- 0.7 Kleinsche Quartiken.- 0.8 Stetige Kurven.- 1 Affin-algebraische Kurven und ihre Gleichungen.- 1.1 Varietät einer Gleichung.- 1.2 Affin-algebraische Kurven.- 1.3 Lemma von Study.- 1.4 Komponentenzerlegung.- 1.5 Irreduzibilität und Zusammenhang.- 1.6 Minimalpolynom.- 1.7 Grad.- 1.8 Schnittpunkte mit einer Geraden.- 2 Der projektive Abschluß.- 2.1 Unendlich-ferne Punkte.- 2.2 Projektive Ebene.- 2.3 Projektiver Abschluß einer Kurve.- 2.4 Komponentenzerlegung.- 2.5 Schnittmultiplizität für Kurve und Gerade.- 2.6 Schnitt von zwei Kurven.- 2.7 Satz von Bézout.- 3 Tangenten und Singularitäten.- 3.1 Glatte Punkte.- 3.2 Singularitätenmenge.- 3.3 Lokale Ordnung.- 3.4 Tangenten in singulären Punkten.- 3.5 Ordnung und Schnittmultiplizität.- 3.6 Formel von Euler.- 3.7 Kurven durch vorgegebene Punkte.- 3.8 Anzahl der Singularitäten.- 4 Polaren und Hesse-Kurve.- 4.1 Polaren.- 4.2 Eigenschaften der Polaren.- 4.3 Schnitt der Kurve mit ihrer Polaren.- 4.4 Hesse-Kurve.- 4.5 Schnitt der Kurve mit ihrer Hesse-Kurve.- 4.6 Beispiele.- 5 Duale Kurve und Plückerformeln.- 5.1 Duale Kurve.- 5.2 Algebraizität der dualen Kurve.- 5.3 Irreduzibilität der dualen Kurve.- 5.4 Lokale numerische Invarianten.- 5.5 Biduale Kurve.- 5.6 Einfache Doppelpunkte und Spitzen.- 5.7 Plückerformeln.- 5.8 Beispiele.- 5.9 Beweis der Plückerformeln.- 6 Der Ring der konvergenten Potenzreihen.- 6.1 Globale und lokale Irreduzibilität.- 6.2 Formale Potenzreihen.- 6.3 Konvergente Potenzreihen.- 6.4 Banachalgebren.- 6.5 Substitution von Potenzreihen.- 6.6 Ausgezeichnete Variable.- 6.7 Weierstraßscher Vorbereitungssatz.- 6.8 Beweise.- 6.9 Satz über implizite Funktionen.-6.10 Henselsches Lemma.- 6.11 Teibarkeit im Potenzreihenring.- 6.12 Keime analytischer Mengen.- 6.13 Lemma von Study.- 6.14 Lokale Zweige.- 7 Parametrisierung der Kurvenzweige durch Puiseux-Reihen.- 7.1 Problemstellung.- 7.2 Theorem über die Puiseux-Reihe.- 7.3 Träger einer Potenzreihe.- 7.4 Quasihomogenes Initialpolynom.- 7.5 Der Iterationsschritt.- 7.6 Die Iteration.- 7.7 Formale Parametrisierungen.- 7.8 Theorem von Puiseux (geometrisch).- 7.9 Beweis.- 7.10 Variation der Lösungen.- 7.11 Konvergenz der Puiseux-Reihe.- 7.12 Linearfaktorzerlegung von Weierstraßpolynomen.- 8 Tangenten und Schnittmultiplizitäten von Kurvenkeimen.- 8.1 Tangenten von Kurvenkeimen.- 8.2 Tangenten in glatten und singulären Punkten.- 8.3 Lokale Schnittmultiplizität mit einer Geraden.- 8.4 Lokale Schnittmultiplizität mit einem irreduziblen Keim.- 8.5 Lokale Schnittmultiplizität von Kurvenkeimen.- 8.6 Schnittmultiplizität und Ordnung.- 8.7 Lokale und globale Schnittmultiplizität.- 9 Die Riemannsche Fläche zu einer algebraischen Kurve.- 9.1 Riemannsche Flächen.- 9.2 Beispiele.- 9.3 Desingularisierung einer algebraische Kurve.- 9.4 Beweis.- 9.5 Zusammenhang einer Kurve.- 9.6 Formel von Riemann-Hurwitz.- 9.7 Geschlechtsformel für glatte Kurven.- 9.8 Geschlechtsformel für Plückerkurven.- 9.9 Geschlechtsformel von Max Noether.- A.1 Die Resultante.- A 1.1 Resultante und gemeinsame Nullstellen.- A 1.2 Diskriminante.- A 1.3 Resultante homogener Polynome.- A 1.4 Resultante und Linearfaktoren.- A.2 Überlagerungen.- A 2.1 Definitionen.- A 2.2 Eigentliche Abbildungen.- A 2.3 Liftung von Wegen.- A.3 Der Satz über implizite Funktionen.- A.4 Das Newton-Polygon.- A 4.1 Das Newton-Polygon einer Potenzreihe.- A 4.2 Das Newton-Polygon eines Weierstraßpolynoms.- A.5 Eine numerische Invariante vonKurvensingularitäten.- A 5.1 Analytische Äquivalenz von Singularitäten.- A 5.2 Grad einer Singularität.- A 5.3 Allgemeine Klassenformel.- A 5.4 Allgemeine Geschlechtsformel.- A 5.5 Grad und Ordnung.- A 5.6 Beispiele.- A.6 Die Ungleichung von Harnack.- A 6.1 Reell-algebraische Kurven.- A 6.2 Zusammenhangskomponenten und Grad.- A 6.3 Homologie mit Koeffizienten in ?/2?.- Symbolverzeichnis.

Notă biografică

Gerd Fischer ist Autor der bekannten Lehrbücher "Lineare Algebra" und "Analytische Geometrie" und Professor am Mathematischen Institut der Universität Düsseldorf.