Cantitate/Preț
Produs

Elliptic Curves: Graduate Texts in Mathematics, cartea 111

Autor Dale Husemöller
en Limba Engleză Paperback – 19 noi 2010
There are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 49038 lei  6-8 săpt.
  Springer – 19 noi 2010 49038 lei  6-8 săpt.
Hardback (1) 58639 lei  6-8 săpt.
  Springer – 22 dec 2003 58639 lei  6-8 săpt.

Din seria Graduate Texts in Mathematics

Preț: 49038 lei

Nou

Puncte Express: 736

Preț estimativ în valută:
9384 9910$ 7809£

Carte tipărită la comandă

Livrare economică 13-27 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441930255
ISBN-10: 1441930256
Pagini: 516
Ilustrații: XXII, 490 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.72 kg
Ediția:Softcover reprint of the original 2nd ed. 2004
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

to Rational Points on Plane Curves.- Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve.- Plane Algebraic Curves.- Elliptic Curves and Their Isomorphisms.- Families of Elliptic Curves and Geometric Properties of Torsion Points.- Reduction mod p and Torsion Points.- Proof of Mordell’s Finite Generation Theorem.- Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields.- Descent and Galois Cohomology.- Elliptic and Hypergeometric Functions.- Theta Functions.- Modular Functions.- Endomorphisms of Elliptic Curves.- Elliptic Curves over Finite Fields.- Elliptic Curves over Local Fields.- Elliptic Curves over Global Fields and ?-Adic Representations.- L-Function of an Elliptic Curve and Its Analytic Continuation.- Remarks on the Birch and Swinnerton-Dyer Conjecture.- Remarks on the Modular Elliptic Curves Conjecture and Fermat’s Last Theorem.- Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties.- Families of Elliptic Curves.

Recenzii

From the reviews of the second edition:
"Husemöller’s text was and is the great first introduction to the world of elliptic curves … and a good guide to the current research literature as well. … this second edition builds on the original in several ways. … it has certainly gained a good deal of topicality, appeal, power of inspiration, and educational value for a wider public. No doubt, this text will maintain its role as both a useful primer and a passionate invitation to the evergreen theory of elliptic curves and their applications" (Werner Kleinert, Zentralblatt MATH, Vol. 1040, 2004)

Textul de pe ultima copertă

This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into the powerful and more general language of Galois cohomology and descent theory. An analytic section of the book includes such topics as elliptic functions, theta functions, and modular functions. Next, the book discusses the theory of elliptic curves over finite and local fields and provides a survey of results in the global arithmetic theory, especially those related to the conjecture of Birch and Swinnerton-Dyer.
This new edition contains three new chapters. The first is an outline of Wiles's proof of Fermat's Last Theorem. The two additional chapters concern higher-dimensional analogues of elliptic curves, including K3 surfaces and Calabi-Yau manifolds. Two new appendices explore recent applications of elliptic curves and their generalizations. The first, written by Stefan Theisen, examines the role of Calabi-Yau manifolds and elliptic curves in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory.
About the First Edition:
"All in all the book is well written, and can serve as basis for a student seminar on the subject."
-G. Faltings, Zentralblatt