Cantitate/Preț
Produs

Energy Harvesting with Functional Materials and Microsystems: Devices, Circuits, and Systems

Editat de Madhu Bhaskaran, Sharath Sriram, Krzysztof Iniewski
en Limba Engleză Paperback – 29 mar 2017
For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity.
Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growing field of energy harvesting from a materials and device perspective, with resulting technologies capable of enabling low-power implantable sensors or a large-scale electrical grid.
In addition to the design, implementation, and components of energy-efficient electronics, the book covers current advances in energy-harvesting materials and technology, including:
  • High-efficiency solar technologies with lower cost than existing silicon-based photovoltaics
  • Novel piezoelectric technologies utilizing mechanical energy from vibrations and pressure
  • The ability to harness thermal energy and temperature profiles with thermoelectric materials
Whether you’re a practicing engineer, academician, graduate student, or entrepreneur looking to invest in energy-harvesting devices, this book is your complete guide to fundamental materials and applied microsystems for energy harvesting.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 45319 lei  6-8 săpt. +10868 lei  6-12 zile
  CRC Press – 29 mar 2017 45319 lei  6-8 săpt. +10868 lei  6-12 zile
Hardback (1) 109350 lei  6-8 săpt.
  CRC Press – 12 noi 2013 109350 lei  6-8 săpt.

Din seria Devices, Circuits, and Systems

Preț: 45319 lei

Preț vechi: 58979 lei
-23% Nou

Puncte Express: 680

Preț estimativ în valută:
8673 9150$ 7228£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25
Livrare express 27 noiembrie-03 decembrie pentru 11867 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138074101
ISBN-10: 1138074101
Pagini: 290
Ilustrații: 195; 21 Tables, black and white; 127 Illustrations, black and white
Dimensiuni: 156 x 234 x 18 mm
Greutate: 0.41 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Seria Devices, Circuits, and Systems


Cuprins

Powering Microsystems with Ambient Energy. Low-Power Energy Harvesting Solutions for Biomedical Devices. Energy Harvesting: Thermoelectric and Microsystems Perspective and Opportunities. Thermopower Wave-Based Micro- and Nanoscale Energy Sources. Polymer Solar Cell: An Energy Source for Low-Power Consumption Electronics. Inverted Organic Solar Cells. Monocrystalline Silicon Solar Cell Optimization and Modeling. Piezoelectric Thin Films and Their Application to Vibration Energy Harvesters. Piezoelectric Vibration Energy Harvesters: Modeling, Design, Limits, and Benchmarking.

Notă biografică

Dr. Madhu Bhaskaran holds a BE, MEng, and Ph.D from RMIT University, Melbourne, Australia. The recipient of the Australian Research Council Post-Doctoral Fellowship 2010-2013 currently serves as senior research fellow and joint leader of the RMIT University Functional Materials and Microsystems Research Group. In 2011, she received worldwide media coverage for her use of in situ nanoindentation in characterizing the nanoscale piezoelectric energy generation properties of thin films. She has published 80 peer-reviewed publications, including 50 journal articles over the last five years.
Dr. Sharath Sriram holds a Ph.D from RMIT University, Melbourne, Australia. Recipient of the Australian Research Council Post-Doctoral Fellowship 2011-2014, he is senior research fellow and joint leader of the RMIT University Functional Materials and Microsystems Research Group. The highly decorated Dr. Sriram has published in leading nanoscience journals and received over $1.4 million in research and infrastructure funding over the last three years. His expertise includes the synthesis and characterisation of functional thin films, underpinned by skills in microelectronic fabrication techniques.
Dr. Krzysztof (Kris) Iniewski is managing R&D at Redlen Technologies Inc., Vancouver, British Columbia, Canada, a leading manufacturer of high resolution cadmium zinc telluride semiconductor radiation detectors. He is also president of CMOS Emerging Technologies Research Inc., Coquitlam, British Columbia, Canada, an organization hosting high-tech events on communications, microsystems, optoelectronics, and sensors. A popular speaker and consultant, he has published over 100 research papers, written and edited several books, and held faculty and management positions at University of Toronto, Ontario, Canada; University of Alberta, Edmonton, Canada; Simon Fraser University, Burnaby, British Columbia, Canada; and PMC-Sierra Inc., Burnaby, British Columbia, Canada.

Recenzii

"… provides an excellent overview of recent research advances using materials and systems for energy harvesting. … begins with a well-written review on the present approaches and circuit designs for energy harvesting, storage, and use. … There are many examples of functional devices with application data, graphs, and engineering equations to help the reader develop his own energy-harvesting device. … engineers interested in developing new sensors, communication links, and low-power electronic devices, and students in mechanical, electrical, and materials science, would find this book a great way to learn quickly about energy-harvesting technology and a starting point for developing new ideas."
—John J. Shea, Eaton Corporation, Moon Township, Pennsylvania, USA, from IEEE Electrical Insulation Magazine, May/June 2015
"Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growing field of energy harvesting from a materials and device perspective, with resulting technologies capable of enabling low-power implantable sensors or a large-scale electrical grid."
IEEE Microwave Magazine, June 2014

Descriere

For decades, people have sought to harvest energy from natural sources. Lately, climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices, and thermoelectric technology is being explored to convert wasted engine heat into electricity. Written by experts from academia and industry, Energy Harvesting with Functional Materials and Microsystems presents current research and explains the field from a materials and device perspective, with resulting technologies capable of enabling low-power implantable sensors or large-scale electrical grids.