Cantitate/Preț
Produs

Entire Solutions of Semilinear Elliptic Equations: Progress in Nonlinear Differential Equations and Their Applications, cartea 33

Autor Ilya A. Kuzin, Stanislav I. Pohozaev
en Limba Engleză Hardback – 23 sep 1997
Semilinear elliptic equations play an important role in many areas of mathematics and its applications to physics and other sciences. This book presents a wealth of modern methods to solve such equations, including the systematic use of the Pohozaev identities for the description of sharp estimates for radial solutions and the fibring method. Existence results for equations with supercritical growth and non-zero right-hand sides are given.
Readers of this exposition will be advanced students and researchers in mathematics, physics and other sciences who want to learn about specific methods to tackle problems involving semilinear elliptic equations.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 62567 lei  6-8 săpt.
  Birkhäuser Basel – 12 oct 2011 62567 lei  6-8 săpt.
Hardback (1) 63177 lei  6-8 săpt.
  Birkhäuser Basel – 23 sep 1997 63177 lei  6-8 săpt.

Din seria Progress in Nonlinear Differential Equations and Their Applications

Preț: 63177 lei

Preț vechi: 74326 lei
-15% Nou

Puncte Express: 948

Preț estimativ în valută:
12090 12748$ 10064£

Carte tipărită la comandă

Livrare economică 10-24 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783764353230
ISBN-10: 3764353236
Pagini: 260
Ilustrații: 260 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:1997
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Progress in Nonlinear Differential Equations and Their Applications

Locul publicării:Basel, Switzerland

Public țintă

Research

Cuprins

§ 0 Notation.- 1 Classical Variational Method.- § 1 Preliminaries.- § 2 The Classical Method: Absolute Minimum.- § 3 Approximation by Bounded Domains.- § 4 Approximation for Problems on an Absolute Minimum.- § 5 The Monotonicity Method. Uniqueness of Solutions.- 2 Variational Methods for Eigenvalue Problems.- § 6 Abstract Theorems.- § 7 The Equation —?u + a(X) |u|p?2u ? ?b|u|q?2u = 0.- § 8 Radial Solutions —?u + ?f(u) = 0.- § 9 The Equation —?u ? ?|u|p?2u ? b|u|q?2u = 0.- § 10 The Equation.- § 11 The Comparison Method for Eigenvalue Problems (Concentration Compactness).- § 12 Homogeneous Problems.- 3 Special Variational Methods.- § 13 The Mountain Pass Method.- § 14 Behavior of PS-sequences. The Concentration Compactness (Comparison) Method.- § 15 A General Comparison Theorem. The Ground State. Examples for the Mountain Pass Method.- § 16 Behavior of PS-sequences in the Symmetric Case. Existence Theorems.- § 17 Nonradial Solutions of Radial Equations.- § 18 Methods of Bounded Domains Approximation.- 4 Radial Solutions: The ODE Method.- § 19 Basic Techniques of the ODE Method.- § 20 Autonomous Equations in the N-dimensional Case.- § 21 Decaying Solutions. The One-dimensional Case.- § 22 The Phase Plane Method. The Emden-Fowler Equatio.- § 23 Scaling.- § 24 Positive Solutions. The Shooting Method.- 5 Other Methods.- § 25 The Method of Upper and Lower Solutions.- § 26 The Leray-Schauder Method.- § 27 The Method of A Priori Estimates.- § 28 The Fibering Method. Existence of Infinitely Many Solutions.- § 29 Nonexistence Results.- Appendices.- A Spaces and Functionals.- B The Strauss Lemma.- C Invariant Spaces.- D The Schwarz Rearrangement.- E The Mountain Pass Method.- References.