Evolutionary Computation in Data Mining: Studies in Fuzziness and Soft Computing, cartea 163
Editat de Ashish Ghoshen Limba Engleză Paperback – 15 noi 2014
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 634.26 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 15 noi 2014 | 634.26 lei 6-8 săpt. | |
Hardback (1) | 640.46 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 18 oct 2004 | 640.46 lei 6-8 săpt. |
Din seria Studies in Fuzziness and Soft Computing
- 20% Preț: 982.99 lei
- 20% Preț: 642.05 lei
- 20% Preț: 284.42 lei
- 20% Preț: 872.96 lei
- 20% Preț: 914.87 lei
- 20% Preț: 1033.25 lei
- 20% Preț: 975.69 lei
- 20% Preț: 984.96 lei
- 18% Preț: 938.04 lei
- 20% Preț: 324.56 lei
- 20% Preț: 327.45 lei
- 20% Preț: 980.73 lei
- Preț: 385.06 lei
- 20% Preț: 636.88 lei
- 20% Preț: 969.37 lei
- 18% Preț: 942.39 lei
- 20% Preț: 979.59 lei
- 20% Preț: 982.49 lei
- 15% Preț: 635.55 lei
- 20% Preț: 640.59 lei
- 20% Preț: 981.06 lei
- 15% Preț: 630.23 lei
- 20% Preț: 992.70 lei
- 20% Preț: 975.87 lei
- Preț: 382.22 lei
- 18% Preț: 1202.76 lei
- 20% Preț: 640.46 lei
- 18% Preț: 935.55 lei
- 18% Preț: 932.61 lei
Preț: 634.26 lei
Preț vechi: 792.83 lei
-20% Nou
Puncte Express: 951
Preț estimativ în valută:
121.42€ • 126.21$ • 100.67£
121.42€ • 126.21$ • 100.67£
Carte tipărită la comandă
Livrare economică 07-21 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642421952
ISBN-10: 3642421954
Pagini: 288
Ilustrații: XVIII, 266 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642421954
Pagini: 288
Ilustrații: XVIII, 266 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2005
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Studies in Fuzziness and Soft Computing
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
Evolutionary Algorithms for Data Mining and Knowledge Discovery.- Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining.- GAP: Constructing and Selecting Features with Evolutionary Computing.- Multi-Agent Data Mining using Evolutionary Computing.- A Rule Extraction System with Class-Dependent Features.- Knowledge Discovery in Data Mining via an Evolutionary Algorithm.- Diversity and Neuro-Ensemble.- Unsupervised Niche Clustering: Discovering an Unknown Number of Clusters in Noisy Data Sets.- Evolutionary Computation in Intelligent Network Management.- Genetic Programming in Data Mining for Drug Discovery.- Microarray Data Mining with Evolutionary Computation.- An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts.
Textul de pe ultima copertă
This carefully edited book reflects and advances the state of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms. It emphasizes the utility of different evolutionary computing tools to various facets of knowledge discovery from databases, ranging from theoretical analysis to real-life applications. "Evolutionary Computation in Data Mining" provides a balanced mixture of theory, algorithms and applications in a cohesive manner, and demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics.
Caracteristici
State of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms Demonstrates how the different tools of evolutionary computation can be used for solving real-life problems in data mining and bioinformatics Includes supplementary material: sn.pub/extras