Geodesic Flows: Progress in Mathematics, cartea 180
Autor Gabriel P. Paternainen Limba Engleză Hardback – sep 1999
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 679.13 lei 6-8 săpt. | |
Birkhäuser Boston – 10 oct 2012 | 679.13 lei 6-8 săpt. | |
Hardback (1) | 629.29 lei 6-8 săpt. | |
Birkhäuser Boston – sep 1999 | 629.29 lei 6-8 săpt. |
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 736.64 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 571.05 lei
- Preț: 385.81 lei
- Preț: 388.49 lei
- Preț: 370.50 lei
- Preț: 383.72 lei
- 18% Preț: 717.24 lei
- 15% Preț: 641.51 lei
- 15% Preț: 638.28 lei
- 18% Preț: 882.79 lei
- Preț: 378.64 lei
- Preț: 384.47 lei
- Preț: 372.21 lei
- 15% Preț: 522.66 lei
- 15% Preț: 632.01 lei
- 15% Preț: 639.73 lei
- Preț: 374.84 lei
- Preț: 385.81 lei
- Preț: 391.85 lei
- 15% Preț: 687.50 lei
- Preț: 416.92 lei
- Preț: 379.39 lei
- 18% Preț: 887.42 lei
- 18% Preț: 788.75 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1110.76 lei
- 15% Preț: 485.73 lei
- 15% Preț: 583.11 lei
Preț: 629.29 lei
Preț vechi: 740.33 lei
-15% Nou
Puncte Express: 944
Preț estimativ în valută:
120.49€ • 125.47$ • 99.97£
120.49€ • 125.47$ • 99.97£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817641443
ISBN-10: 0817641440
Pagini: 149
Ilustrații: XIII, 149 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:1999
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 0817641440
Pagini: 149
Ilustrații: XIII, 149 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:1999
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
0 Introduction.- 1 Introduction to Geodesic Flows.- 1.1 Geodesic flow of a complete Riemannian manifold.- 1.2 Symplectic and contact manifolds.- 1.3 The geometry of the tangent bundle.- 1.4 The cotangent bundle T*M.- 1.5 Jacobi fields and the differential of the geodesic flow.- 1.6 The asymptotic cycle and the stable norm.- 2 The Geodesic Flow Acting on Lagrangian Subspaces.- 2.1 Twist properties.- 2.2 Riccati equations.- 2.3 The Grassmannian bundle of Lagrangian subspaces.- 2.4 The Maslov index.- 2.5 The geodesic flow acting at the level of Lagrangian subspaces.- 2.6 Continuous invariant Lagrangian subbundles in SM.- 2.7 Birkhoff’s second theorem for geodesic flows.- 3 Geodesic Arcs, Counting Functions and Topological Entropy.- 3.1 The counting functions.- 3.2 Entropies and Yomdin’s theorem.- 3.3 Geodesic arcs and topological entropy.- 3.4 Manning’s inequality.- 3.5 A uniform version of Yomdin’s theorem.- 4 Mañé’s Formula for Geodesic Flows and Convex Billiards.- 4.1 Time shifts that avoid the vertical.- 4.2 Mañé’s formula for geodesic flows.- 4.3 Manifolds without conjugate points.- 4.4 A formula for the topological entropy for manifolds of positive sectional curvature.- 4.5 Mañé’s formula for convex billiards.- 4.6 Further results and problems on the subject.- 5 Topological Entropy and Loop Space Homology.- 5.1 Rationally elliptic and rationally hyperbolic manifolds.- 5.2 Morse theory of the loop space.- 5.3 Topological conditions that ensure positive entropy.- 5.4 Entropies of manifolds.- 5.5 Further results and problems on the subject.- Hints and Answers.- References.
Recenzii
"The main goal of the book is to present, in a self-contained way, results of the author and of Ricardo Mane about various ways to calculate or estimate the topological entropy of the geodesic flow on a closed Riemannian manifold M. The book begins with two introductory chapters on general properties of geodesic flows including a discussion of some of its properties as a Hamiltonian system acting on the tangent bundle TM of M. The third and fourth chapters present a formula for the topological entropy of the geodesic flow in terms of asymptotic growth of the average number of geodesic arcs in M connecting two given points. This, and similar other formulas for the topological entropy are obtained as an application of a fundamental result of Y. Yomdin which is also discussed, however without proof. The last chapter contains results, mainly due to the author, on topological conditions for M which guarantee that the topological entropy of the geodesic flow for every metric on M is positive. It is also shown that there are manifolds which satisfy these conditions, but for which the infimum of the entropies for metrics with normalized volume vanishes. The text is accompanied by many exercises. Many of the easier details of the material are presented in this form…"
–Zentralblatt Math
"Unique and valuable... the presentation is clean and brisk...useful for self-study, and as a guide to the subject and its literature."
–Mathematical Reviews
–Zentralblatt Math
"Unique and valuable... the presentation is clean and brisk...useful for self-study, and as a guide to the subject and its literature."
–Mathematical Reviews