Cantitate/Preț
Produs

Infinite-Dimensional Dynamical Systems in Mechanics and Physics: Applied Mathematical Sciences, cartea 68

Autor Roger Temam
en Limba Engleză Paperback – 7 dec 2013
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 60242 lei  43-57 zile
  Springer – 7 dec 2013 60242 lei  43-57 zile
Hardback (1) 80403 lei  43-57 zile
  Springer – apr 1997 80403 lei  43-57 zile

Din seria Applied Mathematical Sciences

Preț: 60242 lei

Preț vechi: 70873 lei
-15% Nou

Puncte Express: 904

Preț estimativ în valută:
11529 12005$ 9743£

Carte tipărită la comandă

Livrare economică 10-24 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461268536
ISBN-10: 1461268532
Pagini: 676
Ilustrații: XXII, 650 p.
Dimensiuni: 155 x 235 x 41 mm
Greutate: 0.93 kg
Ediția:2nd ed. 1997. Softcover reprint of the original 2nd ed. 1997
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences

Locul publicării:New York, NY, United States

Public țintă

Graduate

Cuprins

Contents: General results and concepts on invariant sets and attractors.- Elements of functional analysis.- Attractors of the dissipative evolution equation of the first order in time: reaction-diffusion equations.- Fluid mechanics and pattern formation equations.- Attractors of dissipative wave equations.- Lyapunov exponents and dimensions of attractors.- Explicit bounds on the number of degrees of freedom and the dimension of attractors of some physical systems.- Non-well-posed problems, unstable manifolds. lyapunov functions, and lower bounds on dimensions.- The cone and squeezing properties.- Inertial manifolds.- New chapters: Inertial manifolds and slow manifolds the nonselfadjoint case.