Large Deviations Techniques and Applications: Stochastic Modelling and Applied Probability, cartea 38
Autor Amir Dembo, Ofer Zeitounien Limba Engleză Paperback – 18 noi 2009
The second edition, printed in 1998, included new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications were sharpened, new exercises added, and the bibliography updated. The present soft cover edition is a corrected printing of the 1998 edition.
Din seria Stochastic Modelling and Applied Probability
- 17% Preț: 464.60 lei
- 18% Preț: 805.44 lei
- 18% Preț: 1110.72 lei
- 18% Preț: 947.35 lei
- Preț: 390.84 lei
- 18% Preț: 952.40 lei
- 15% Preț: 648.56 lei
- 18% Preț: 951.91 lei
- 15% Preț: 637.13 lei
- 18% Preț: 793.63 lei
- Preț: 391.02 lei
- Preț: 401.42 lei
- 15% Preț: 639.08 lei
- 18% Preț: 733.33 lei
- 18% Preț: 785.11 lei
- 15% Preț: 593.42 lei
- 18% Preț: 1114.96 lei
- 15% Preț: 643.16 lei
- Preț: 390.63 lei
- 15% Preț: 645.60 lei
- 15% Preț: 641.71 lei
- 18% Preț: 954.62 lei
- 15% Preț: 645.14 lei
- 18% Preț: 947.50 lei
- 18% Preț: 804.96 lei
- 15% Preț: 644.63 lei
- 20% Preț: 469.59 lei
- 20% Preț: 581.39 lei
Preț: 494.70 lei
Nou
Puncte Express: 742
Preț estimativ în valută:
94.68€ • 98.48$ • 79.35£
94.68€ • 98.48$ • 79.35£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642033100
ISBN-10: 3642033105
Pagini: 416
Ilustrații: XVI, 396 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.58 kg
Ediția:2nd ed. 1998. 2nd printing 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642033105
Pagini: 416
Ilustrații: XVI, 396 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.58 kg
Ediția:2nd ed. 1998. 2nd printing 2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Stochastic Modelling and Applied Probability
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
LDP for Finite Dimensional Spaces.- Applications-The Finite Dimensional Case.- General Principles.- Sample Path Large Deviations.- The LDP for Abstract Empirical Measures.- Applications of Empirical Measures LDP.
Notă biografică
Amir Dembo is a Professor of Mathematics and of Statistics at Stanford University.
Ofer Zeitouni is a Professor of Mathematics at the Weizmann Institute of Science and at the University of Minnesota.
Ofer Zeitouni is a Professor of Mathematics at the Weizmann Institute of Science and at the University of Minnesota.
Textul de pe ultima copertă
The theory of large deviations deals with the evaluation, for a family of probability measures parameterized by a real valued variable, of the probabilities of events which decay exponentially in the parameter. Originally developed in the context of statistical mechanics and of (random) dynamical systems, it proved to be a powerful tool in the analysis of systems where the combined effects of random perturbations lead to a behavior significantly different from the noiseless case. The volume complements the central elements of this theory with selected applications in communication and control systems, bio-molecular sequence analysis, hypothesis testing problems in statistics, and the Gibbs conditioning principle in statistical mechanics.
Starting with the definition of the large deviation principle (LDP), the authors provide an overview of large deviation theorems in ${{\rm I\!R}}^d$ followed by their application. In a more abstract setup where the underlying variables take values in a topological space, the authors provide a collection of methods aimed at establishing the LDP, such as transformations of the LDP, relations between the LDP and Laplace's method for the evaluation for exponential integrals, properties of the LDP in topological vector spaces, and the behavior of the LDP under projective limits. They then turn to the study of the LDP for the sample paths of certain stochastic processes and the application of such LDP's to the problem of the exit of randomly perturbed solutions of differential equations from the domain of attraction of stable equilibria. They conclude with the LDP for the empirical measure of (discrete time) random processes: Sanov's theorem for the empirical measure of an i.i.d. sample, its extensions to Markov processes and mixing sequences and their application.
The present soft cover edition is a corrected printing of the 1998 edition.
Amir Dembo is a Professor of Mathematics and of Statistics at Stanford University. Ofer Zeitouni is a Professor of Mathematics at the Weizmann Institute of Science and at the University of Minnesota.
Starting with the definition of the large deviation principle (LDP), the authors provide an overview of large deviation theorems in ${{\rm I\!R}}^d$ followed by their application. In a more abstract setup where the underlying variables take values in a topological space, the authors provide a collection of methods aimed at establishing the LDP, such as transformations of the LDP, relations between the LDP and Laplace's method for the evaluation for exponential integrals, properties of the LDP in topological vector spaces, and the behavior of the LDP under projective limits. They then turn to the study of the LDP for the sample paths of certain stochastic processes and the application of such LDP's to the problem of the exit of randomly perturbed solutions of differential equations from the domain of attraction of stable equilibria. They conclude with the LDP for the empirical measure of (discrete time) random processes: Sanov's theorem for the empirical measure of an i.i.d. sample, its extensions to Markov processes and mixing sequences and their application.
The present soft cover edition is a corrected printing of the 1998 edition.
Amir Dembo is a Professor of Mathematics and of Statistics at Stanford University. Ofer Zeitouni is a Professor of Mathematics at the Weizmann Institute of Science and at the University of Minnesota.
Caracteristici
Written by two of the leading researchers in the field Applications come from a wide range of areas, including electrical engineering and DNA sequencing This second edition includes three new sections which reflect current developments in the field, particularly with regard to applications New exercises have been added and the bibliography has been updated Includes supplementary material: sn.pub/extras