Cantitate/Preț
Produs

Linear and Graphical Models: for the Multivariate Complex Normal Distribution: Lecture Notes in Statistics, cartea 101

Autor Heidi H. Andersen, Malene Hojbjerre, Dorte Sorensen, Poul S. Eriksen
en Limba Engleză Paperback – 19 mai 1995
In the last decade, graphical models have become increasingly popular as a statistical tool. This book is the first which provides an account of graphical models for multivariate complex normal distributions. Beginning with an introduction to the multivariate complex normal distribution, the authors develop the marginal and conditional distributions of random vectors and matrices. Then they introduce complex MANOVA models and parameter estimation and hypothesis testing for these models. After introducing undirected graphs, they then develop the theory of complex normal graphical models including the maximum likelihood estimation of the concentration matrix and hypothesis testing of conditional independence.
Citește tot Restrânge

Din seria Lecture Notes in Statistics

Preț: 61163 lei

Preț vechi: 71955 lei
-15% Nou

Puncte Express: 917

Preț estimativ în valută:
11706 12349$ 9755£

Carte tipărită la comandă

Livrare economică 02-16 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387945217
ISBN-10: 0387945210
Pagini: 183
Ilustrații: 183 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.29 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Prerequisites.- 1.1 Complex Matrix Algebra.- 1.2 A Vector Space Isomorphism.- 1.3 Complex Random Variables.- 1.4 Complex Random Vectors and Matrices.- 2 The Multivariate Complex Normal Distribution.- 2.1 The Univariate Complex Normal Distribution.- 2.2 The Multivariate Complex Normal Distribution.- 2.3 Independence, Marginal and Conditional Distributions.- 2.4 The Multivariate Complex Normal Distribution in Matrix Notation.- 3 The Complex Wishart Distribution and the Complex U-distribution.- 3.1 The Complex Wishart Distribution.- 3.2 The Complex U-distribution.- 4 Multivariate Linear Complex Normal Models.- 4.1 Complex MANOVA Models.- 4.2 Maximum Likelihood Estimation in Complex MANOVA Models.- 4.3 Hypothesis Testing in Complex MANOVA Models.- 5 Simple Undirected Graphs.- 6 Conditional Independence and Markov Properties.- 6.1 Conditional Independence.- 6.2 Markov Properties in Relation to Simple Undirected Graphs.- 7 Complex Normal Graphical Models.- 7.1 Notation.- 7.2 The Concentration Matrix.- 7.3 Complex Normal Graphical Models.- 7.4 Maximum Likelihood Estimation of the Concentration Matrix.- 7.5 Decomposition of the Estimation Problem.- 7.6 Hypothesis Testing in Complex Normal Graphical Models.- A Complex Matrices.- A.1 Complex Vector Space.- A.2 Basic Operations of Complex Matrices.- A.3 Inverse Matrix.- A.4 Determinant and Eigenvalues.- A.5 Trace and Rank.- A.6 Conjugate Transpose Matrix.- A.7 Hermitian Matrix.- A.8 Unitary Matrix.- A.9 Positive Semidefinite Complex Matrices.- A.10 Positive Definite Complex Matrices.- A.11 Direct Product.- A.12 Partitioned Complex Matrices.- B Orthogonal Projections.- Notation.