Learning from Data: Artificial Intelligence and Statistics V: Lecture Notes in Statistics, cartea 112
Editat de Doug Fisher, Hans-J. Lenzen Limba Engleză Paperback – 2 mai 1996
Din seria Lecture Notes in Statistics
- 15% Preț: 631.86 lei
- Preț: 385.84 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 945.92 lei
- 20% Preț: 561.42 lei
- 18% Preț: 943.25 lei
- 18% Preț: 943.25 lei
- 18% Preț: 995.97 lei
- 15% Preț: 641.38 lei
- Preț: 436.14 lei
- 15% Preț: 633.53 lei
- 15% Preț: 658.88 lei
- Preț: 383.33 lei
- 15% Preț: 640.71 lei
- 18% Preț: 947.18 lei
- 18% Preț: 1007.35 lei
- 18% Preț: 942.63 lei
- 15% Preț: 639.59 lei
- 18% Preț: 1231.47 lei
- 15% Preț: 643.00 lei
- 18% Preț: 886.62 lei
- Preț: 383.12 lei
- 15% Preț: 633.35 lei
- 15% Preț: 635.65 lei
- Preț: 393.74 lei
- 15% Preț: 632.70 lei
- 15% Preț: 637.28 lei
- 15% Preț: 702.87 lei
- 15% Preț: 642.68 lei
- 15% Preț: 644.63 lei
- 15% Preț: 645.14 lei
- Preț: 382.36 lei
- 15% Preț: 636.30 lei
- 15% Preț: 647.92 lei
- Preț: 380.63 lei
- 18% Preț: 887.05 lei
- 15% Preț: 634.32 lei
- Preț: 378.92 lei
- 15% Preț: 648.56 lei
- 15% Preț: 647.59 lei
- 18% Preț: 780.37 lei
- 15% Preț: 641.20 lei
- 18% Preț: 1102.69 lei
- 15% Preț: 643.16 lei
- Preț: 384.70 lei
Preț: 648.74 lei
Preț vechi: 763.22 lei
-15% Nou
Puncte Express: 973
Preț estimativ în valută:
124.14€ • 129.94$ • 103.32£
124.14€ • 129.94$ • 103.32£
Carte tipărită la comandă
Livrare economică 31 martie-14 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387947365
ISBN-10: 0387947361
Pagini: 450
Ilustrații: 450 p. 14 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387947361
Pagini: 450
Ilustrații: 450 p. 14 illus.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.65 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I Causality.- 1 Two Algorithms for Inducing Structural Equation Models from Data.- 2 Using Causal Knowledge to Learn More Useful Decision Rules from Data.- 3 A Causal Calculus for Statistical Research.- 4 Likelihood-based Causal Inference.- II Inference and Decision Making.- 5 Ploxoma: Testbed for Uncertain Inference.- 6 Solving Influence Diagrams Using Gibbs Sampling.- 7 Modeling and Monitoring Dynamic Systems by Chain Graphs.- 8 Propagation of Gaussian Belief Functions.- 9 On Test Selection Strategies for Belief Networks.- 10 Representing and Solving Asymmetric Decision Problems Using Valuation Networks.- 11 A Hill-Climbing Approach for Optimizing Classification Trees.- III Search Control in Model Hunting.- 12 Learning Bayesian Networks is NP-Complete.- 13 Heuristic Search for Model Structure: The Benefits of Restraining Greed.- 14 Learning Possibilistic Networks from Data.- 15 Detecting Imperfect Patterns in Event Streams Using Local Search.- 16 Structure Learning of Bayesian Networks by Hybrid Genetic Algorithms.- 17 An Axiomatization of Loglinear Models with an Application to the Model-Search Problem.- 18 Detecting Complex Dependencies in Categorical Data.- IV Classification.- 19 A Comparative Evaluation of Sequential Feature Selection Algorithms.- 20 Classification Using Bayes Averaging of Multiple, Relational Rule-Based Models.- 21 Picking the Best Expert from a Sequence.- 22 Hierarchical Clustering of Composite Objects with a Variable Number of Components.- 23 Searching for Dependencies in Bayesian Classifiers.- V General Learning Issues.- 24 Statistical Analysis fo Complex Systems in Biomedicine.- 25 Learning in Hybrid Noise Environments Using Statistical Queries.- 26 On the Statistical Comparison of Inductive Learning Methods.- 27 Dynamical Selection of Learning Algorithms.- 28 Learning Bayesian Networks Using Feature Selection.- 29 Data Representations in Learning.- VI EDA: Tools and Methods.- 30 Rule Induction as Exploratory Data Analysis.- 31 Non-Linear Dimensionality Reduction: A Comparative Performance Analysis.- 32 Omega-Stat: An Environment for Implementing Intelligent Modeling Strategies.- 33 Framework for a Generic Knowledge Discovery Toolkit.- 34 Control Representation in an EDA Assistant.- VII Decision and Regression Tree Induction.- 35 A Further Comparison of Simplification Methods for Decision-Tree Induction.- 36 Robust Linear Discriminant Trees.- 37 Tree Structured Interpretable Regression.- 38 An Exact Probability Metric for Decision Tree Splitting.- VIII Natural Language Processing.- 39 Two Applications of Statistical Modelling to Natural Language Processing.- 40 A Model for Part-of-Speech Prediction.- 41 Viewpoint-Based Measurement of Semantic Similarity Between Words.- 42 Part-of-Speech Tagging from “Small” Data Sets.