Non-Regular Statistical Estimation: Lecture Notes in Statistics, cartea 107
Autor Masafumi Akahira, Kei Takeuchien Limba Engleză Paperback – 18 aug 1995
Din seria Lecture Notes in Statistics
- 15% Preț: 631.86 lei
- 17% Preț: 490.19 lei
- 17% Preț: 460.28 lei
- 18% Preț: 945.92 lei
- 18% Preț: 1007.35 lei
- 18% Preț: 1231.47 lei
- Preț: 383.33 lei
- 15% Preț: 640.71 lei
- 15% Preț: 658.88 lei
- Preț: 436.14 lei
- 20% Preț: 561.42 lei
- 15% Preț: 639.59 lei
- 15% Preț: 633.53 lei
- 18% Preț: 943.25 lei
- 15% Preț: 641.38 lei
- 18% Preț: 995.97 lei
- 18% Preț: 943.25 lei
- 15% Preț: 643.00 lei
- 18% Preț: 947.18 lei
- 18% Preț: 942.63 lei
- 18% Preț: 886.62 lei
- Preț: 383.12 lei
- 15% Preț: 633.35 lei
- 15% Preț: 635.65 lei
- Preț: 393.74 lei
- 15% Preț: 632.70 lei
- 15% Preț: 637.28 lei
- 15% Preț: 702.87 lei
- 15% Preț: 642.68 lei
- 15% Preț: 644.63 lei
- 15% Preț: 645.14 lei
- 15% Preț: 636.30 lei
- 15% Preț: 647.92 lei
- Preț: 380.63 lei
- 18% Preț: 887.05 lei
- 15% Preț: 634.32 lei
- 15% Preț: 648.74 lei
- Preț: 378.92 lei
- 15% Preț: 648.56 lei
- 15% Preț: 647.59 lei
- 18% Preț: 780.37 lei
- 15% Preț: 641.20 lei
- 18% Preț: 1102.69 lei
- 15% Preț: 643.16 lei
- Preț: 384.70 lei
- 15% Preț: 640.37 lei
Preț: 382.36 lei
Nou
Puncte Express: 574
Preț estimativ în valută:
73.17€ • 75.93$ • 61.16£
73.17€ • 75.93$ • 61.16£
Carte tipărită la comandă
Livrare economică 15-29 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387945781
ISBN-10: 0387945784
Pagini: 188
Ilustrații: VIII, 188 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 0387945784
Pagini: 188
Ilustrații: VIII, 188 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.28 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Lecture Notes in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1. General discussions on unbiased estimation.- 1.1. Formulation.- 1.2. Undominated case.- 1.3. The support depending on the parameter.- 1.4. Discrete parameter set.- 1.5. Discontinuous and non-differentiable density.- 1.6. Non square-integrable likelihood ratio.- 1.7. Asymptotic theory for non-regular cases.- 1.8. Asymptotic Bayes posterior distribution of the parameter in non-regular cases.- 1.9. Overview.- 2. Lower bound for the variance of unbiased estimators.- 2.1. Minimum variance.- 2.2. Bhattacharyya type bound for the variance of unbiased estimators in non-regular cases.- 2.3. Lower bound for the variance of unbiased estimators for one-directional distributions.- 2.4. A second type of one-directional distribution and the lower bound for the variance of unbiased estimators.- 2.5. Locally minimum variance unbiased estimation.- 3. Amounts of information and the minimum variance unbiased estimation.- 3.1. Fisher information and the minimum variance unbiased estimation.- 3.2. Examples on unbiased estimators with zero variance.- 3.3. A definition of the generalized amount of information.- 3.4. Examples on the generalized amount of information.- 3.5. Order of consistency.- 4. Loss of information associated with the order statistics and related estimators in the case of double exponential distributions.- 4.1. Loss of information of the order statistics.- 4.2. The asymptotic loss of information.- 4.3. Proofs of Theorems in Section 4.2.- 4.4. Discretized likelihood estimation.- 4.5. Second order asymptotic comparison of the discretized likelihood estimator with others.- 5. Estimation of a common parameter for pooled samples from the uniform distributions and the double exponential distributions.- 5.1. Estimators of a common parameter for the uniform distributions.- 5.2. Comparison of the quasi-MLE, the weighted estimator and others for the uniform distributions.- 5.3. Estimators of a common parameter for the double exponential distributions.- 5.4. Second order asymptotic comparison of the estimators for the double exponential distributions.- 6. Higher order asymptotics in estimation for two-sided Weibull type distributions.- 6.1. The 2?-th order asymptotic bound for the distribution of 2?-th order AMU estimators.- 6.2. Proofs of Lemmas and Theorem in Section 6.1.- 6.3. The 2?-th order asymptotic distribution of the maximum likelihood estimator.- 6.4. The amount of the loss of asymptotic information of the maximum likelihood estimator.- 7. “3/2-th” and second order asymptotics of the generalized Bayes estimators for a family of truncated distributions.- 7.1. Definitions and assumptions.- 7.2. Generalized Bayes estimators for a family of truncated distributions.- 7.3. Second order asymptotic bound in symmetrically truncated densities.- 7.4. Maximum probability estimation.- 7.5. Examples.- 7.6. Some remarks.- Supplement. The bound for the asymptotic distribution of estimators when the maximum order of consistency depends on the parameter.- 5.1. Order of consistency depending on the parameter.- 5.2. The bound for the asymptotic distribution of AMU estimators in the autoregressive process.- References.