Linear Operators in Hilbert Spaces: Graduate Texts in Mathematics, cartea 68
Autor Joachim Weidmann Traducere de Joseph Szücsen Limba Engleză Paperback – 13 iun 2012
Din seria Graduate Texts in Mathematics
- Preț: 402.87 lei
- Preț: 361.66 lei
- 17% Preț: 398.96 lei
- Preț: 355.82 lei
- Preț: 442.05 lei
- Preț: 380.25 lei
- Preț: 289.86 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.44 lei
- Preț: 450.63 lei
- Preț: 380.97 lei
- Preț: 431.30 lei
- 18% Preț: 340.31 lei
- 13% Preț: 361.38 lei
- 13% Preț: 355.74 lei
- 17% Preț: 359.57 lei
- Preț: 484.66 lei
- 20% Preț: 571.25 lei
- 15% Preț: 530.95 lei
- Preț: 484.47 lei
- 15% Preț: 354.38 lei
- Preț: 396.29 lei
- 13% Preț: 429.96 lei
- 17% Preț: 363.59 lei
- 18% Preț: 280.94 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.58 lei
- 17% Preț: 367.70 lei
- 13% Preț: 359.37 lei
- 17% Preț: 398.77 lei
- 17% Preț: 398.50 lei
- 17% Preț: 496.22 lei
- 13% Preț: 364.37 lei
- 20% Preț: 449.72 lei
- Preț: 383.07 lei
- Preț: 364.79 lei
- 17% Preț: 427.27 lei
- Preț: 357.19 lei
- Preț: 404.99 lei
- 17% Preț: 395.86 lei
- Preț: 376.19 lei
- 13% Preț: 417.03 lei
- 15% Preț: 586.46 lei
- 15% Preț: 582.31 lei
- Preț: 386.58 lei
Preț: 518.28 lei
Preț vechi: 609.75 lei
-15% Nou
Puncte Express: 777
Preț estimativ în valută:
99.20€ • 103.39$ • 82.58£
99.20€ • 103.39$ • 82.58£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461260295
ISBN-10: 1461260299
Pagini: 420
Ilustrații: XIII, 402 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461260299
Pagini: 420
Ilustrații: XIII, 402 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Vector spaces with a scalar product, pre-Hilbert spaces.- 1.1 Sesquilinear forms.- 1.2 Scalar products and norms.- 2 Hilbert spaces.- 2.1 Convergence and completeness.- 2.2 Topological notions.- 3 Orthogonality.- 3.1 The projection theorem.- 3.2 Orthonormal systems and orthonormal bases.- 3.3 Existence of orthonormal bases, dimension of a Hilbert space.- 3.4 Tensor products of Hilbert spaces.- 4 Linear operators and their adjoints.- 4.1 Basic notions.- 4.2 Bounded linear operators and functionals.- 4.3 Isomorphisms, completion.- 4.4 Adjoint operator.- 4.5 The theorem of Banach-Steinhaus, strong and weak convergence.- 4.6 Orthogonal projections, isometric and unitary operators.- 5 Closed linear operators.- 5.1 Closed and closable operators, the closed graph theorem.- 5.2 The fundamentals of spectral theory.- 5.3 Symmetric and self-adjoint operators.- 5.4 Self-adjoint extensions of symmetric operators.- 5.5 Operators defined by sesquilinear forms (Friedrichs’ extension).- 5.6 Normal operators.- 6 Special classes of linear operators.- 6.1 Finite rank and compact operators.- 6.2 Hilbert-Schmidt operators and Carleman operators.- 6.3 Matrix operators and integral operators.- 6.4 Differential operators on L2(a, b) with constant coefficients.- 7 The spectral theory of self-adjoint and normal operators.- 7.1 The spectral theorem for compact operators, the spaces Bp (H1H2).- 7.2 Integration with respect to a spectral family.- 7.3 The spectral theorem for self-adjoint operators.- 7.4 Spectra of self-adjoint operators.- 7.5 The spectral theorem for normal operators.- 7.6 One-parameter unitary groups.- 8 Self-adjoint extensions of symmetric operators.- 8.1 Defect indices and Cayley transforms.- 8.2 Construction of self-adjoint extensions.- 8.3 Spectra of self-adjoint extensionsof a symmetric operator.- 8.4 Second order ordinary differential operators.- 8.5 Analytic vectors and tensor products of self-adjoint operators.- 9 Perturbation theory for self-adjoint operators.- 9.1 Relatively bounded perturbations.- 9.2 Relatively compact perturbations and the essential spectrum.- 9.3 Strong resolvent convergence.- 10 Differential operators on L2(?m).- 10.1 The Fourier transformation on L2(?m).- 10.2 Sobolev spaces and differential operators on L2(?m) with constant coefficients.- 10.3 Relatively bounded and relatively compact perturbations.- 10.4 Essentially self-adjoint Schrödinger operators.- 10.5 Spectra of Schrödinger operators.- 10.6 Dirac operators.- 11 Scattering theory.- 11.1 Wave operators.- 11.2 The existence and completeness of wave operators.- 11.3 Applications to differential operators on L2(?m).- A.1 Definition of the integral.- A.2 Limit theorems.- A.3 Measurable functions and sets.- A.4 The Fubini-Tonelli theorem.- A.5 The Radon-Nikodym theorem.- References.- Index of symbols.- Author and subject index.