Cantitate/Preț
Produs

Linear Programming Duality: An Introduction to Oriented Matroids: Universitext

Autor Achim Bachem, Walter Kern
en Limba Engleză Paperback – 30 iul 1992

Din seria Universitext

Preț: 56895 lei

Preț vechi: 66935 lei
-15% Nou

Puncte Express: 853

Preț estimativ în valută:
10891 11432$ 8996£

Carte tipărită la comandă

Livrare economică 30 ianuarie-13 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540554172
ISBN-10: 3540554173
Pagini: 224
Ilustrații: IV, 218 p.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.33 kg
Ediția:1992
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

1 Prerequisites.- 7.1 Sets and Relations.- 10.2 Linear Algebra.- 14.3 Topology.- 15.4 Polyhedra.- 2 Linear Duality in Graphs.- 2.1 Some Definitions.- 2.2 FARKAS’ Lemma for Graphs.- 2.3 Subspaces Associated with Graphs.- 2.4 Planar Graphs.- 2.5 Further Reading.- 3 Linear Duality and Optimization.- 3.1 Optimization Problems.- 3.2 Recognizing Optimal Solutions.- 3.3 Further Reading.- 4 The FARKAS Lemma.- 4.1 A first version.- 4.2 Homogenization.- 4.3 Linearization.- 4.4 Delinearization.- 4.5 Dehomogenization.- 4.6 Further Reading.- 5 Oriented Matroids.- 5.1 Sign Vectors.- 5.2 Minors.- 5.3 Oriented Matroids.- 5.4 Abstract Orthogonality.- 5.5 Abstract Elimination Property.- 5.6 Elementary vectors.- 5.7 The Composition Theorem.- 5.8 Elimination Axioms.- 5.9 Approximation Axioms.- 5.10 Proof of FARKAS’ Lemma in OMs.- 5.11 Duality.- 5.12 Further Reading.- 6 Linear Programming Duality.- 6.1 The Dual Program.- 6.2 The Combinatorial Problem.- 6.3 Network Programming.- 6.4 Further Reading.- 7 Basic Facts in Polyhedral Theory.- 7.1 MINKOWSKI’S Theorem.- 7.2 Polarity.- 7.3 Faces of Polyhedral Cones.- 7.4 Faces and Interior Points.- 7.5 The Canonical Map.- 7.6 Lattices.- 7.7 Face Lattices of Polars.- 7.8 General Polyhedra.- 7.9 Further Reading.- 8 The Poset (O, ?).- 8.1 Simplifications.- 8.2 Basic Results.- 8.3 Shellability of Topes.- 8.4 Constructibility of O.- 8.5 Further Reading.- 9 Topological Realizations.- 9.1 Linear Sphere Systems.- 9.2 A Nonlinear OM.- 9.3 Sphere Systems.- 9.4 PL Ball Complexes.- 9.5 Further Reading.